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Abstract

We analyze a market populated by partially aware agents who per-
ceive a ‘coarsening’of the state space and thus disregard the distinction
between some states. We first show that the introduction of differen-
tial awareness has an impact on prices and allocations as compared to
a market with fully aware agents. Moreover, we show that these effects
are persistent: in particular, whenever agents have identical correct be-
liefs and equal discount factors, and the awareness partitions are nested,
all agents survive. When agents have heterogeneous beliefs, differential
awareness allows agents with wrong beliefs to survive, even when markets
are complete and all agents are expected utility maximizers. Provided un-
awareness is relevant (in a sense we define more precisely), the condition
for an agent to survive is that his survival index is at least as large as that
of the agents with finer partitions. We also study the impact of an increase
in individual awareness and obtain a "paradox of ignorance ": unless the
agent can immediately adopt correct beliefs on the newly learned events,
increasing his awareness might harm his chances for survival.
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JEL Codes: D50, D81.

1 Introduction

The question of whether financial markets price assets accurately is of central
importance in economics, especially in the light of the rapid increase in the vol-
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ume, value and complexity of financial transactions over recent decades. The
strong form of the effi cient markets hypothesis (EMH) states that the market
price of an asset is the best possible estimate of its value, given all available infor-
mation, public and private. However, observed behavior of financial markets ap-
pears inconsistent with the strong-form EMH in a number of respects. Notable
examples are excessive volatility (including apparent ‘bubbles’and crashes) and
the ‘equity premium’and ‘risk-free rate’puzzles.
One argument in favor of strong-form EMH, discussed by Blume and Easley

(2006) and Sandroni (2000), is the idea that markets favor the best-informed
and most rational traders. Trades in a financial market may be seen as ‘betting
one’s beliefs’about the relative probabilities of different states of nature, and
the resulting returns on assets. Over time, traders who correctly judge these
probabilities and make rational investment choices based on their beliefs will
accumulate wealth at the expense of others. In the limit, only these rational
well-informed traders will survive, and market prices will reflect their beliefs.
This argument is intuitively appealing, and the central result can be derived

under relatively weak conditions1 . However, the argument raises two major
diffi culties. First, in simple versions of the model, all but the best-informed
traders vanish almost surely (a.s). This appears inconsistent with observed
outcomes, where some traders do better than others over the long run, but
poorly-informed traders manage to survive. Second, given the infinite multi-
tude of possibilities relevant to market outcomes, the rationality requirements
for well-informed traders seem unreasonably strong. Ad hoc modifications of
rationality assumptions, such as those derived from behavioral observations,
appear diffi cult to specify in a way that sheds light on the problem.
Recent developments in the theory of bounded and differential awareness,

(Grant and Quiggin 2013, 2014; Halpern and Rego 2009; Heifetz, Meier and
Schipper 2006)2 provide a way of addressing these problems. The crucial feature
of models of bounded awareness is that agents are not aware of all possible states
of nature, or of all propositions that might be relevant in formulating probability
judgements. Differential awareness arises in market or strategic interactions
between such agents, where not all agents have the same awareness. Differential
awareness is also relevant in the context of decisions over time, where agents
may become aware of new possibilities in the course of the process (Karni and
Vierø 2013, 2014).
Grant and Quiggin (2014) distinguish between two forms of bounded aware-

ness: ‘coalescence’ (more commonly referred to in the literature as ’coarsen-
ing’)3 , in which some distinctions between states are disregarded, and ‘reduc-

1This result is conditional on the assumption that markets are complete (Coury and Sci-
ubba 2012), as well as that endowments are bounded (Kogan et al. 2006, 2011; Yan 2008). Its
robustness to preference specifications is still being explored (Borovicka 2014; Condie 2008;
Da Silva 2011; Easley and Yang 2014; Guerdjikova and Sciubba 2015).

2See Schipper (2016) for an extensive bibliography on unawareness.
3‘Coalescence’refers to the notion that agents fail to distinguish between different states

of nature, effectively coalescing them into a single state. Coarsening refers to the fact that
the resulting perceived state space represents a partition of the state space, and that such
partitions may be ordered in terms of coarseness or, conversely, refinement. In this paper, we
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tion’, in which some states of nature are not considered. Both of these pos-
sibilities must be distinguished from the case where some agents assign zero
probability to events that are objectively possible or that other agents regard as
possible. In a companion paper, Guerdjikova and Quiggin (2016) we consider
the survival problem in relation to reduced awareness4 . In this paper, we focus
on bounded and differential awareness as coarsening, drawing on the analysis of
Heifetz, Meier and Schipper (2006).
We consider the impact of differential awareness, in the sense of coarsening,

on allocations and survival in markets. We first construct a simple example
of an economy with differential awareness and identical beliefs and show that
allocations and prices in general differ from those with fully aware agents. In
particular, compared to the standard model where all agents are fully insured
against idiosyncratic risk, differential awareness might lead more aware agents
to buy only partial insurance against idiosyncratic risk. On the other hand, less
aware agents obtain insurance against aggregate risk, even in the absence of
differential risk attitudes. In equilibrium, the more aware agent enjoys a higher
expected consumption than that of his initial endowment.
We next demonstrate that these effects are persistent in that less aware

agents are not driven out of the market. In particular, whenever agents have
equal discount factors and identical beliefs, and the awareness partitions are
nested, all agents survive. Thus, under these conditions, the coarseness of the
partition is irrelevant for survival, even though it alters the equilibrium allo-
cation and even though, ceteris paribus, agents with coarser partitions achieve
lower welfare in equilibrium. In the special case, in which awareness is bounded,
but not differential, the main results of Blume and Easley (2006) remain valid.
Differential awareness makes a difference when agents have heterogeneous

beliefs. Provided unawareness is relevant (in a sense we will define more pre-
cisely), an agent whose beliefs are further away from the truth can survive if
the agents with beliefs closer to the truth are less aware. The key to the re-
sult is that agents may survive either because their probability judgements are
more accurate than those of others, or because they can trade on possibilities
of which agents with more accurate judgements are unaware. This result is in
stark contrast with the results cited above, which preclude belief heterogeneity
in bounded economies with complete markets and expected utility maximiza-
tion.
We next consider the case (arguably the most realistic) where agents’aware-

ness is non-nested, so that no agent is strictly more aware than any other. In
particular, we look at an economy, in which each agent is aware of relevant
possibilities not considered by any other agent and demonstrate that all agents
survive a.s. regardless of their beliefs and discount factors. Adding a fully aware
agent with correct beliefs to such an economy implies that the surviving traders,
regardless of awareness, must have correct beliefs and equal discount factors.

will use the term ’coarsening’while maintaining the distinction drawn by Grant and Quiggin
(2014).

4Modica, Rustichini and Tallon (1998) provide an analysis of a one-period economy with
unawareness as reduction.

3



Finally, we consider two extensions of the model. First, we introduce finan-
cial assets and show that the notion of market completeness depends on the
awareness structures of the agents. Second, we study the impact of an individ-
ual increase in awareness. We show that if all other agents have correct beliefs,
adopting correct beliefs on the finer partition upon becoming more aware is a
necessary condition for survival. As we explain, however, this condition is far
from innocuous. If an agent with correct beliefs is present in the economy, a
partially aware agent who becomes aware of new contingencies and who has to
use Bayesian updating to learn their correct probabilities will vanish a.s.. We
obtain a ‘paradox of ignorance’: unless the agent can immediately adopt correct
beliefs, increasing the agent’s awareness will decrease his chances of survival.

2 The Model

2.1 The "True" Model of the Economy

Let N = {0; 1; 2; ..} denote the set of time periods. Uncertainty is modelled
through a sequence of random variables {St}t∈N each of which takes values
in a finite set S. We set S0 = {s0}, that is, no information is revealed in
period 0. Denote by st ∈ S the realization of random variable St. Denote
by Ω =

∏
t∈NS the set of all possible observation paths, with representative

element σ = (s0; s1; s2 . . . st . . .). Finally denote by Ωt =
∏t
τ=0S the collection

of all finite paths of length t, with representative element σt = (s0; s1; s2 . . . st).
Each finite observation path σt identifies a decision/observation node and the
set of all possible observation paths Ω can also be seen as the set of all nodes.

We can represent the information revelation process in this economy through
a sequence of finite partitions of the state space Ω. In particular, define the
cylinder with base on σt ∈ Ωt, t ∈ N as Z (σt) = {σ ∈ Ω|σ = (σt . . .)}. Let
Ft = {Z (σt) : σt ∈ Ωt} be a partition of the set Ω. Clearly, F = (F0 . . .Ft . . .)
denotes a sequence of finite partitions of Ω such that F0 = Ω and Ft is finer
than Ft−1.
Let Ft be the σ-algebra generated by partition Ft. F0 is the trivial σ-algebra.

Let F be the σ-algebra generated by ∪t∈NFt. It can be shown that {Ft}t∈N is
a filtration.
We define on (Ω;F) a probability distribution π. Intuitively, π describes

the evolution of the state process in the economy. In what follows, for brevity,
we abuse notation slightly by denoting π (Z (σt)) = π (σt) = π (s0; s1; s2 . . . st).
The one-step-ahead probability distribution π (st+1 | σt) at node σt is deter-
mined by:

π (st+1 | σt) = π (s0 . . . st; st+1 | s0 . . . st) =
π (s0 . . . st; st+1)

π (s0 . . . st)
for any st+1 ∈ S.

In words, π (st+1 | σt) is the probability under distribution πn that the next
observation will be st+1, given that we have reached node σt.
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We will assume that the true process of the economy is i.i.d. and write
π (st+1 = s | σt) =: π (s). Note that this does not restrict the endowment
process to be i.i.d.. The measurability requirements on the endowment process
are specified below.

2.2 Modelling Unawareness as Coarsening

In this paper, we think of unawareness as the inability of the agent to form a
suffi ciently fine perception of the state space. A partially aware agent i will
perceive a state space W i coarser than S, in which some states with potentially
different consumption allocations are coalesced into a single perceived state.
To understand the process, it is helpful to think in syntactic (propositional
terms). Each state in S may be described in terms of the truth values of a
set of propositions P describing relevant contingencies, in this case, related to
endowments.
An agent may be less aware than another because the set of descriptions

available to them is coarser. For example, a relatively unaware agent might
consider the proposition ‘the economy is (or is not) at full employment’, giving
rise to a state space with two elements. A more aware agent might distinguish
the various phases of the economic cycle, such as ’peak’, ‘contraction’, ‘trough’
and ‘expansion’. An even more aware agent might consider a state space in
which the states were indexed by the rate of growth of gross domestic product.
An alternative form of coarsening arises when some agents display ‘pure un-

awareness’of relevant propositions (Li 2008). For example, two agents might
have access to the same set of propositions to describe the state of the domes-
tic economy, but only one of them might consider developments in the world
economy. The more aware agent would have access to a state space derived as
the Cartesian product of the state of the domestic economy and the state of
the world economy, while the less aware agent would have access to a coarser
quotient space, in which all states of the world economy were treated as in-
distinguishable. We would expect the less aware agent to display ‘home bias’
(French and Poterba 1991)
Consider an economy with a finite set I of infinitely lived agents. We now

formalize the idea that some agents perceive a coarser state space than the one
given by S. In particular, agent i is assumed to be aware of a partition of S
given by W i =

{
wi1 . . . w

i
Ki

}
, where each wik ⊆ S, wik ∩ wik′ = ∅ for any k 6= k′

and ∪Kik=1w
i
k = S. This is a specific type of unawareness: the agent’s perception

of the world is coarser than reality in that he cannot distinguish between those
states which are grouped in a given wik.
We assume that all fully aware agents have identical information and that

the information revelation process for them is represented by the sequence F.
A fully aware agent can distinguish any two nodes σt and σ′t. By contrast, a
partially aware agent cannot distinguish nodes σt and σ′t if and only if, for every
τ ≤ t, sτ , s′τ ∈ wikτ for some wkτ ∈ W i. Hence, for a partially aware agent,
the paths he is aware of can be written as Ωi =

∏
t∈NW

i with a representative
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element ωi =
(
w0 = {s0} ;wi1 . . . w

i
t . . .

)
. Denote by Ωit the set of paths of length

t.
From the point of view of agent i, the information revelation is described by

finite partitions of the set Ωi,
(
Fit
)
t∈N defined in analogy to (Ft)t∈N. Note that

for each t, Fit is coarser than the corresponding Ft. We will denote by F it the
σ-algebra generated by partition Fit. F i0 = F0 is the trivial σ-algebra. Let F i
be the σ-algebra generated by ∪t∈NF it . Just as above,

{
F it
}
t∈N is a filtration.

Agent i’s beliefs πi are defined on
(
Ωi;F i

)
. The one-step ahead probability

distribution πi
(
wit+1 | ωit

)
is defined analogously to π (st+1 | σt).

Obviously, F is finer than F i and hence, the true probability distribution π
on (Ω;F) specifies a probability distribution on

(
Ωi;F i

)
with

π
(
ωit
)

= π
{
σt | sτ ∈ wiτ for all τ ∈ {1 . . . t}

}
.

We will say that i’s beliefs are correct if they coincide with the restriction of π
to
(
Ωi;F i

)
.

For most of the paper, we will restrict attention to beliefs which describe an
i.i.d. process, πi

(
wit+1 = wi | ωit

)
= πi

(
wi
)
. We will relax this assumption in

Section 5, when we study the impact of an increase in awareness.
There is a single good consumed in positive quantities. We will require

that each agent is aware of their consumption stream, which means that the
consumption set of i consists of functions ci : Ω →

∏
t∈NR+ measurable w.r.t.(

Ωi;F i
)
. In particular, we require the initial endowment of the economy to

satisfy this measurability requirement. Each agent i is endowed with a particular
F it -measurable consumption plan, called i’s endowment stream, and denoted ei.
The total endowment of the economy is denoted by e =

∑
i e
i

Agents are assumed to be expected utility maximizers given their knowledge
about the economy and their (subjective) beliefs5 . Agent i’s utility function for
risk is denoted by ui and his discount factor is β

i.
We will impose the following assumptions on utility functions and endow-

ments, which are standard in the survival literature:

Assumption 1 All agents are expected utility maximizers with utility func-
tions for risk ui : R+ → R which are twice continuously differentiable,
strictly concave, and satisfy limc→0 u

′
i(c) =∞ and limc→∞ u′i (c) = 0.

Assumption 2 Individual endowments are strictly positive, ei (σt) > 0 for all
i and σt. Aggregate endowments are uniformly bounded away from zero
and uniformly bounded from above. Formally, there is an m > 0 such
that

∑
i∈I e

i(σt) > m for all i, σt; moreover, there is an m′ > m > 0 such
that

∑
i∈Ie

i(σt) < m′ for all σt.

Assumption 3 π (s) > 0 for all s ∈ S and for all i ∈ I, πi
(
wi
)
> 0 for all

wi ∈W i.
5An expected utility representation with a coarse subjective state space has been recently

axiomatized by Minardi and Savochkin (2016).
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Assumption 1 implies that the agent would never choose a 0-consumption
in a state he believes to have a positive probability. Assumption 2 ensures that
endowments are uniformly bounded away from 0 and above. Given the i.i.d.
structure imposed on the true process and on beliefs, Assumption 3 states that
one-step-ahead probabilities of all states of the world are positive and that all
subjective beliefs assign a positive one-step-ahead probability to every element in
their respective partitions. This assumption is analogous to imposing absolute
continuity of subjective beliefs w.r.t. the true probability distribution (as in
Blume and Easley, 2006). Taken together, Assumptions 1 and 3 ensure that no
agent vanishes in finite time.
In economies with bounded endowments and complete markets, and popu-

lated by expected utility maximizers, only beliefs and discount factors matter
for survival. In particular, if all agents are equally patient, agents with incorrect
beliefs vanish a.s. in the presence of agents with correct beliefs. By contrast, in
unbounded economies, risk attitudes also matter for survival, and agents with
incorrect beliefs can survive. In order to disentangle the effects of unawareness
on survival from those of risk attitude, we therefore, restrict our attention to
the case of bounded economies.

3 Equilibrium in Financial Markets with Differ-
ential Awareness

Our main results are derived on the assumption that agents trade at time 0 over
all future contingencies, with no subsequent opportunity for retrading.

Definition 1 An equilibrium of the economy with differential awareness con-
sists of an integrable price system (p (σt))σt∈Ω and a consumption stream ci for
every agent i such that (i) all agents i ∈ {1 . . . I} are maximizing their expected
utility given the price system choosing consumption streams measurable relative
to their awareness partition and (ii) markets clear:

ci = arg max
ci

V i0
(
ci
)

= arg max
ci


ui
(
ci (σ0)

)
+
∑∞
t=1 β

t
i

∑
ωit∈Ωit

πi
(
ωit
)
ui
(
ci
(
ωit
))

s.t.
∑
t∈N
∑
ωit∈Ωit

∑
σt∈ωit

p (σt) c
i
(
ωit
)

≤
∑
t∈N
∑
ωit∈Ωit

∑
σt∈ωit

p (σt) e
i
(
ωit
)


(1)

I∑
i=1

ci (σt) =

I∑
i=1

ei (σt) ∀σt ∈ Ω

An equilibrium in an economy with (bounded) differential awareness is con-
sistent with the fact that different agents have different perceptions of the state
space and, hence, effectively optimize over different sets of commodities (con-
sumption on events ωit, rather than σt). The equilibrium can be interpreted
in the following way: first, in period 0, before any uncertainty is resolved, all
agents choose their consumption paths ci for all future contingencies of which
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they are aware. The price of consumption contingent on a coarse contingency
ωit is simply the sum of consumption prices over all nodes σt ∈ ωit, that is,∑
σt∈ωit

p (σt). As time evolves some of the uncertainty is resolved. We assume,
however, that agents do not become aware of finer contingencies than those that
they perceive given their partition Ωi. (This assumption is relaxed in Section
5.2). Agents thus do not learn the state σt that has occurred at t, but rather the
partition that corresponds to the state that has occurred, ωit such that σt ∈ ωit.

Proposition 2 Under Assumptions 1– 3, an equilibrium of the economy with
coarse contingencies exists. Furthermore, the equilibrium satisfies: for each
i ∈ I and at each ωit, ωit+1 such that π

(
ωit+1

)
> 0,

u′i
(
ci
(
ωit
))

βiπ
i
(
ωit+1 | ωit

)
u′i
(
ci
(
ωit+1

)) =
p
(
ωit
)

p
(
ωit+1

) =:

∑
σt∈ωit

p (σt)∑
σt+1∈ωit+1

p (σt+1)
, (2)

where p(·) is the equilibrium price system.

We now provide a simple example to illustrate the impact of coarse contin-
gencies on equilibrium prices and allocations.

Example 3 Consider an economy with two agents, Ann and Bob. Their initial
endowments in each period depend on whether each of them is employed or not.
In particular, the economy has 4 states: S = {s1 . . . s4}. In s1, A is employed,
and B is not, in s2, B is employed, but not A. In s3, both agents are unemployed
and in s4, both are employed. Intuitively, states s1 and s2 can be interpreted
as ‘business as usual’, in which unemployment is a matter of idiosyncratic risk,
whereas in states s3 and s4, the economy is subject to aggregate risk (low or
high unemployment rates). The initial endowment of an agent is 1 in a state,
in which he is unemployed and 2 in a state in which he is employed:

Initial endowment: s1 s2 s3 s4

Ann 2 1 1 2
Bob 1 2 1 2

Assume now that while A is fully aware of S, B is only aware of the partition

WB =
{
wB1 = {s1; s3} ;wB2 = {s2; s4}

}
.

Hence, while B is conscious of the possibility that he might be unemployed, he
does not factor the employment status of A into his reasoning about the economy
and is thus ignorant about the aggregate uncertainty the economy faces.
Bob’s initial endowment respects the measurability assumption imposed above,
that is, eBs1 = eBs3 = 1 and eBs4 = eBs4 = 2. This measurability requirement would
be violated, if we were to assume that B’s partition is given by

W̃B =
{
w̃B1 = {s1; s2} ; w̃B2 = {s3; s4}

}
,

since now eBs1 = 1 6= eBs2 even though s1, s2 ∈ w̃B1 . Clearly, the partition W̃B

cannot reflect B’s awareness, unless B is ignorant of his own initial endowment.
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We assume that the markets in this economy are complete. It follows that
each agent can trade on any event he is aware of, and, hence, consumption
streams have to satisfy the same measurability requirement as the one imposed
on the initial endowments. While markets are a priori complete, this condition
will in general restrict the insurance possibilities in the economy and change the
equilibrium allocation.
Consider first the case, in which both A and B are fully aware of S. As-

suming that both have identical (correct) beliefs π about the realization of the 4
states and strictly concave von-Neumann-Morgenstern utility functions uA and
uB, the equilibrium of this economy would fully insure both agents against the
idiosyncratic risk, that is, cA (s1) = cA (s2) and cB (s1) = cB (s2), and hence,
p∗1
π(s1) =

p∗2
π(s2) obtains. As for the allocation across states s3 and s4, we know that

the less risk-averse agent will partially insure the more risk-averse one against
the aggregate risk. If both agents have identical utility functions, no trade across
these two states will occur.
Now consider the situation in which B is only partially aware of S and has

the partition WB specified above. The equilibrium allocation described above is
no longer feasible, since it specifies cB (s1) > 1 = cB (s3) and would thus require
B to become aware of the distinction between state s1 and s3. So what can
we say about the equilibrium with unawareness? First, we can show (see the
proof of Claim 1 in the Appendix) that neither A, nor B are insured against
idiosyncratic risk in equilibrium when B is only partially aware. Second, since
u is concave, in equilibrium, 1 < cB (s1) < cB (s2) < 2, that is, B buys partial
insurance against idiosyncratic risk. This in turn implies that state prices are
biased relative to the case of full awareness: p∗1

π(s1) <
p∗2
π(s2) . Finally, if

π (s1)π (s2)− π (s3)π (s4) ≤ 0 (3)

A’s expected consumption is higher than her expected initial endowment (see the
proof of Claim 2 in the Appendix).
The suffi cient condition (3) for A to bear more risk and thus obtain a higher

expected consumption than under her initial endowment will hold if all 4 states
are equally likely. Alternatively, suppose that the state s4 has a probability π4 >
1
2 , that is, full employment is the default state of the economy. Assume also that
the two states with idiosyncratic risk, s1 and s2 are equally probable. π1 = π2,
that is, the probability that each one of the agents loses their job is the same.
In this scenario, condition (3) is satisfied as well.
While the example is formulated as a static one, we may show that,assuming

equal discount factors, identical von-Neumann—Morgenstern functions uA and
uB and an initial endowment i.i.d. over time, the static equilibrium will be
replicated in every period t.
We now add (to Ann and Bob) two agents Clara and David. Assume

that C has the same initial endowment as A, and that D has the same initial
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endowment as B. That is, eC = eA, eD = eB:

Initial endowment: s1 s2 s3 s4

Clara 2 1 1 2
David 1 2 1 2

however, the awareness partition of Clara is given by

WC =
{
wC1 = {s1; s4} , wC2 = {s2; s3}

}
,

whereas David is fully aware. Assume that all agents have identical correct
beliefs conditional on their awareness partitions and that they are all risk-averse.
Consider first a (sub)economy consisting of only B and C and note that the

awareness partitions of B and C preclude any trade between the two of them.
From B’s point of view the only consumption allocations which he prefers to his
initial endowment, and which can be derived through trade, are of the type:(

cB (s1) ; cB (s2) ; cB (s3) ; cB (s4)
)

= (1 + a; 2− b; 1 + a; 2− b)

with a > 0, b > 0. However, market clearing implies that the resulting consump-
tion bundle for C specifies

cB (s1) = 2− a 6= cB (s4) = 2 + b

and is thus inconsistent with her unawareness partition.
In contrast, if A and D were the only agents in the economy, they would

fully insure each other across states s1 and s2 in equilibrium, cA (s1) = cA (s2)
and cD (s1) = cD (s2). This result holds independently of whether their utility
functions are identical or not.6 If their utility functions are identical, no trade
on the states with aggregate risk, s3 and s4 occurs between them.
When all four agents are present in the economy, the equilibrium allocation

is different. Suppose for simplicity that everyone’s beliefs are correct and as-
sign a probability of 1

4 to each of the states. First, it is impossible to ensure
everybody against idiosyncratic risk in equilibrium, (see the proof of Claim 3 in
the Appendix). Second, in general, the presence of partially aware traders in
the market (B and C) implies that the fully aware traders A and D cannot be
fully insured against idiosyncratic risk, either, (see the proof of Claim 4 in the
Appendix).

Our example demonstrates that markets with partially aware agents exhibit
different properties from those populated by fully aware agents. First, in such
markets, some of the risk-sharing opportunities cannot be used, due to the
measurability requirements on the consumption of partially aware agents. This
constraint affects even trades among fully aware agents, who, in the absence of
partially aware ones, could have obtained full insurance against idiosyncratic

6 In the presence of differential bargaining power, which might arise from different risk
attitudes, the party with less bargaining power might be required to make a state-independent
payment in order to reach agreement on the full insurance bargain.
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risk. Second, fully aware agents might provide additional insurance against ag-
gregate risk to partially aware ones, even when both types have identical beliefs
and identical risk preferences. Third, in the presence of partially aware agents,
state prices might be biased and finally, fully aware agents might obtain higher
expected returns than partially aware ones.

4 Survival in Economies with Coarse Contin-
gencies

The insights we gained from the example discussed in the previous section raise
the question of whether the impact of partially aware agents on prices and
allocations is temporary or permanent. Is it the case that their consumption
converges to 0 over time, thus driving the equilibrium allocation to the one that
would have obtained had all agents been fully aware? In this section, we will
show that partially aware agents can have a long-term impact on prices and
risk-sharing.
We define survival as usual:

Definition 4 Agent i vanishes on a path σ if limt→∞ ci (σt) = 0. Agent i
survives on σ if limt→∞ sup ci (σt) > 0.

In this section, we will assume that Assumptions 1– 3 hold, without explic-
itly stating them in each of the propositions below. We first remark, that in the
absence of aggregate risk, partial awareness has no effect on survival:

Remark 5 In an economy with no aggregate uncertainty, equal discount factors
and identical correct beliefs, all agents will be fully insured. Hence, all agents
will survive regardless of their level of awareness. In this case, the first-order
conditions (2) (with correct beliefs) and the equilibrium allocation coincide with
those in a fully aware economy.

Our first result generalizes the main result of Blume and Easley (2006) to
apply to agents with identical awareness partitions.

Proposition 6 Consider two agents with identical awareness partitions. If the
two agents have identical beliefs, but different discount factors, then the agent
with the lower discount factor vanishes a.s.. If two agents have identical discount
factors and different beliefs, the agent whose beliefs are further away from the
truth vanishes a.s.. More generally, the agent with the lower survival index:

lnβi +
∑
w

π (w) ln
π (w)

πi (w)

vanishes a.s..

Our next result concerns agents with nested awareness partitions. It shows
that differential awareness alone does not affect survival.

11



Proposition 7 Consider a population of agents with nested partitions, equal
discount factors and correct beliefs. All agents survive a.s.

Our result shows that whenever agents have equal discount factors and cor-
rect beliefs, and the awareness partitions are nested, the coarseness of the par-
tition is irrelevant for survival. In fact, all agents survive. We can relate this
result to Example 3. Recall that in a one-period economy with fully aware Ann
and partially aware Bob, insurance against idiosyncratic risk did not obtain in
equilibrium. In contrast, the fully aware agent insured the partially aware one
against some of the aggregate risk. The result above implies that these features
of the economy will persist in the long-run, as long as both agents have equal
survival indices.
Even though the coarseness of the agent’s partition is irrelevant for survival,

it has an impact on the agent’s welfare as the next proposition shows:

Proposition 8 Consider an economy with coarse contingencies and assume
that two agents i and j have nested awareness partitions such that the partition
of i is finer than that of j, identical endowments ei = ej = e, identical utility
functions u, identical discount factors β and identical beliefs π restricted to Ωj.
In any equilibrium of the economy with equilibrium allocation c and price system
p, V i0

(
ci
)
≥ V j0

(
cj
)
.

Ceteris paribus, an agent with a coarser partition will obtain a lower welfare
in equilibrium than an agent with a higher level of awareness. Intuitively, the
more aware agent will benefit from the larger set of trades that he can engage
in and will obtain a higher utility from consumption. Note, however, that the
weak inequality cannot be replaced by a strict one. For example, if i and j are
the only agents in the population, no trade will occur in equilibrium and their
welfare will be identical.
We next examine the impact of heterogeneity in discount factors and beliefs

on survival when agents have nested partitions. We first show that an agent
with a coarser partition can only survive if his survival index is at least as large
as that of the agent with finer partition. In particular, for given identical beliefs,
the partially aware agent can survive only if his discount factor is at least as
high as that of the fully aware agent and, for given identical discount factors,
the partially aware agent can only survive only if his beliefs are at least as close
to the truth as those of the fully aware agent.

Proposition 9 If an agent i who is partially aware has a strictly lower survival
index than an agent j who has a finer awareness partition,

ln
βj
βi

+

( ∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi (wi)
−

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj (wi)

)
> 0

i vanishes a.s.
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This result shows that in order for an agent i with a coarser partition than
agent j to survive, it has to be that:

ln
βj
βi

+

( ∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi (wi)
−

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj (wi)

)
≤ 0.

Hence, we will consider an economy, in which the agents with coarser par-
titions have (weakly) larger survival indices. To formulate our result, we will
have to understand when unawareness matters in the long-term. We will use
the following definition:

Definition 10 The unawareness of agent i, given by the partition Ωi, is irrel-
evant in the limit if for any ωi ∈ Ωi and any σ, σ′ ∈ ωi

lim
t→∞

e (σt)− e (σ′t) = 0 .

The unawareness of agent i, given by the partition Ωi is relevant in the limit if
for some wi ∈W i, s and s′ ∈ wi, there is an ε > 0 such that for any σ, σ′ ∈ ωi,

lim
t→∞

sup [e (σt; s)− e (σ′t; s
′)] > ε . (4)

The unawareness of agent i is considered irrelevant if in the limit, the total
endowment of the economy is measurable w.r.t. agent i’s awareness partition.
Such an agent is aware of the total endowment process of the economy in the
limit. In contrast, agent i’s unawareness is relevant even in the limit, if there are
at least two states that i cannot distinguish and in which the total endowment
of the economy remains distinct.

Proposition 11 Consider a population of agents with nested partitions Ω1

strictly finer than Ω2... strictly finer than Ωn and ordered survival indices such
that: either

lnβk −
∑
wk′

π
(
wk
′
)

ln
π
(
wk
′
)

πk (wk′)
< lnβk′ −

∑
wk′

π
(
wk
′
)

ln
π
(
wk
′
)

πk′ (wk′)

or βk = βk′ and π
k
(
wk
′
)

= πk
′
(
wk
′
)
for all wk

′ ∈ W k′ holds for all k <

k′ Assume that k̃ is the agent with the finest partition, whose unawareness
is relevant in the limit (k̃ > 1), whereas the unawareness of all agents i < k̃

is irrelevant in the limit. Then all agents
(
k̃ − 1

)
; k̃..n survive a.s. Agent

k <
(
k̃ − 1

)
survives a.s. ifln

βk̄−1

βk
−
∑
wk̃

π
(
wk̃−1

)
ln

πk
(
wk̃−1

)
πk̃−1

(
wk̃−1

)
 = 0

and vanishes a.s. otherwise.
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The proposition considers agents with nested partitions, such that agents
with finer partitions have a survival index at most as large as those with coarser
partitions. In such an economy, an agent survives regardless of the value of
his survival index as long as his unawareness is relevant in the limit. So does
agent k̃ − 1 with the coarsest partition, whose unawareness is irrelevant in the
limit. Agents with finer partitions whose unawareness is irrelevant in the limit,
survive a.s. if their discount factor and beliefs match those of k̃− 1. This result
is interesting, because it shows that agents with finer partitions can survive
even when their survival index is not maximal in the economy. This requires
however the presence of agents who are unaware of some states, which in fact
lead to different endowment even in the limit. In such a scenario, the partially
aware agents cannot consume the entire endowment of the economy: such a
consumption stream would not be measurable w.r.t. their awareness partition.
Hence, it is the agents with lower survival indexes, but finer partitions who
ensure that the markets clear. They consume the ‘leftovers’ of the partially
aware agents and, thus, the fact that unawareness is relevant ensures that they
survive a.s..
Moreover, since the comparison of agents’beliefs is restricted to common

elements of their partitions, an agent with a finer partition can survive in the
presence of agents with coarser partitions and correct beliefs, even if his beliefs
about the finer contingencies (disregarded by the others) are wrong. For exam-
ple, in Example 3, Bob’s unawareness is relevant in the limit, whereas Ann’s is
not. When only Ann and Bob are present in the economy, given equal discount
factors, Ann will survive if she and Bob assign equal probabilities to the events
wB1 = {s1; s3} and wB2 = {s2; s4}, regardless of whether her estimates about the
probabilities of the individual states s1, s2, s3 or s4 are correct.

Our last two propositions in this section examine an economy, in which the
agents’ partitions are not necessarily nested. The economy with four agents
discussed in Example 3 is an example of such a situation. In this economy, the
awareness partitions of Bob and Clara are non-nested / overlapping. We now
provide a formal definition of economies with non-nested partitions:

Definition 12 Agents i and j have non-nested partitions if there are states s,
s′, s′′, s′′′ ∈ S such that s, s′ ∈ wi, s′′ ∈ wi′ and s′′′ ∈ wi′′ for some wi′ 6= wi′′

and s ∈ wj, s′ ∈ wj′, s′′, s′′′ ∈ wj′′ for some wj 6= wj′.
If the states s and s′ satisfy this definition, then we will say that i can

distinguish between s and s′, whereas j cannot.
We will say that agents in the economy have non-nested partitions if, for each

agent i, there are states s and s′ ∈ S that i can distinguish, but that no other
agent in the economy can distinguish. Formally, there are wi and wi′ ∈ W i,
wi 6= wi′ such that s ∈ wi, s′ ∈ wi′ and for all j 6= i, s, s′ ∈ wj for some
wj ∈W j.

Our first result shows that whenever an agent is the only one in the economy
capable of distinguishing some relevant contingencies, he survives regardless of
his beliefs and discount factor, and regardless of the awareness partitions of the
other agents.
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Proposition 13 Consider an economy with coarse contingencies and assume
that there exists an agent j and states s and s′ such that the partitions of j
and any other agent i ∈ I\ {j} are non-nested and j can distinguish between
s and s′, whereas i cannot. Assume that condition (4) holds for s, s′ and all
i ∈ I\ {j}. Then agent j survives a.s..
In particular, in an economy with non-nested partitions as in Definition

12, in which condition (4) holds for any two states s and s′ w.r.t. which the
partitions of two agents are non-nested, all agents survive a.s..

A special case of Proposition 13 is that in which the finest partition that
is coarser than all awareness partitions

(
Ωi
)
i∈I is the trivial partition. In this

case, no trade occurs in equilibrium and the agents consume their initial endow-
ment streams. The absence of trade does not depend on agents’beliefs or their
discount factors. All agents thus survive a.s. regardless of the values of their
survival indices.
Our last result introduces a fully aware agent with correct beliefs into the

economy from Proposition 13. The presence of such an agent will cause all
agents with coarser partitions and incorrect beliefs or lower discount factors to
vanish a.s. However, we show that as long as the partially aware agents have
non-nested partitions, correct beliefs and discount factors identical to that of
the fully aware agent, they survive a.s..

Proposition 14 Take an economy with coarse contingencies and a set of agents
I ′ ∪ {j} (j 6∈ I ′) Suppose that the condition of non-nested partitions as in
Definition 12 is satisfied for the set of agents I and condition (4) holds for any
two states s and s′ such that at least one agent in I ′ can distinguish between s
and s′ and at least one agent cannot. Let j be a fully aware agent. Suppose that
all agents have identical discount factors and correct beliefs. Then all agents
survive a.s.

The results of this section have shown that markets do not select specifi-
cally for more aware agents. However, when agents differ w.r.t. their beliefs
and discount factors, more aware agents have an advantage in that they can
survive even when their beliefs are incorrect and their discount factor is smaller
than that of less aware agents. This implies that economies with differential
awareness can exhibit limited risk sharing, biased state prices and lower saving
rates as compared to economies with identical awareness across agents. When
the awareness partitions are non-nested, agents with different perceptions of the
state space survive. This can reduce the amount of trade in the economy.
The next section discusses two extensions of the model presented above.

First, we consider the introduction of financial assets. Next, we analyze the
impact of an increase in the awareness of an agent on his survival.

5 Extensions

In this section, we discuss two of the restrictive features of the model presented
and analyzed so far. The first concerns the fact that consumption streams are
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traded directly, rather than through a financial market. The second is related
to the fact that our model so far did not allow agents’awareness to increase
over time.

5.1 Introducing Assets

In the classic tradition of Arrow and Debreu (1954), the model presented so far
has assumed that agents can trade on every possible contingency, provided that
their consumption streams remain measurable w.r.t. their awareness partitions.
In reality, this type of trade usually occurs via asset markets. While with fully
aware agents, one can easily rewrite the model presented above as one with
a full set of Arrow securities, this equivalence fails once partial awareness is
considered.
A partially aware agent will have a limited understanding of an Arrow se-

curity which pays off in a contingency he cannot imagine. It appears natural
to assume that a partially aware agent will hold only assets with payoffs mea-
surable w.r.t. his awareness partition. However, as we illustrate below in an
example, such a measurability requirement restricts the set of possible trades in
an otherwise complete market.
In general, introducing a full set of Arrow securities will fail to ‘complete’

the market in the sense of allowing all possible trades. However, for some of the
cases discussed in Section 4, we will provide a method that allows us to construct
an ‘effectively complete’set of securities for given awareness partitions of the
agents. The initial endowments of the agents can then be translated into initial
endowments with such securities so that the resulting equilibrium replicates the
equilibrium in the economy, in which consumption streams are traded directly.
Hence, the main survival results derived in Section 4 extend to markets that are
effectively complete, given the awareness partitions of the agents.
We first use the economy from Example 3 to show how the equilibrium in

an economy, in which consumption is traded directly can be replicated by an
equilibrium in a market with an appropriately chosen asset structure.

Example 15 Consider the economy from Example 3 with Ann and Bob. Let
cA (s), s ∈ S and cB (s1; s3), cB (s2; s4) denote the equilibrium consumption
streams in this economy.
We would now like to introduce assets into the economy such that, by trading

in assets, agents can replicate their equilibrium consumption streams. Suppose
first that the economy has a full set of Arrow securities. While Ann could use
these assets to obtain any consumption stream, Bob cannot conceive of any
of the Arrow securities, since their payoff structure violates the measurability
requirement and thus, could not trade in them. This, however, would preclude
trade between Ann and Bob.
Consider instead, an alternative set of assets, which we can call ‘effectively

complete’. This set consists of: a security A13 that pays 1 in the event {s1; s3}
and nothing otherwise; a security A24 that pays 1 in the event {s2; s4} and
nothing otherwise; and the four standard Arrow securities A1, A2, A3 and A4—
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one for each of the states s1, s2, s3 and s4. From the point of view of both agents
Ann and Bob, this is a complete market, in which each of them can achieve any
combination of payoffs across the contingencies they perceive. While Ann can
trade in all 6 of the available assets, Bob is constrained to trades involving A13

and A24.
With this asset structure, we can now reproduce the equilibrium in which

consumption is traded directly. To do so, reformulate the initial endowments
of the agents in terms of asset holdings: āA1 = āA4 = 2, āA2 = āA3 = 1, āA13 =
āA24 = 0, āB13 = 1, āB24 = 2, āBk = 0, k ∈ {1...4}, where āik denotes the initial
holdings of asset Ak by agent i ∈ {A;B}. Note that the initial endowments with
assets simply replicate the initial endowment of the agents w.r.t. their awareness
partitions. The measurability requirement now restricts Bob′s portfolio to have
aBω = 0 for all ω ∈ {{s1} ; {s2} ; {s3} ; {s4}}. Hence, to reproduce the equilibrium
derived above, Ann will have to sell short cB (s1; s3) units of asset A13 and
cB (s2; s4) units of A24. In fact, Ann can replicate A13 by using her initial
endowment of A1 and A3 and replicate A24 by using her initial endowment of
A2 and A4. The resulting equilibrium portfolios are:

A1 A2 A3 A4 A13 A24

Ann 2 1 1 2 −cBob (s1; s3) −cBob (s2; s4)
Bob 0 0 0 0 cBob (s1; s3) cBob (s2; s4)

These portfolios satisfy the measurability requirement.

Below, we will show how this construction can be extended to any economy
with nested partitions.

Definition 16 For the economy described in Section 2, we will call an asset
structure A effectively complete, if every agent i can achieve all consumption
streams measurable w.r.t. his awareness partition by holding a portfolio of assets
with payoffs measurable w.r.t. his awareness partition.

The simplest way to construct an effectively complete asset structure is to
introduce what we will call a ‘generalized Arrow security’ for every element
in the partition of each agent i ∈ I. That is, for each i ∈ I, each t ∈ N,
and each ωit ∈ Ωit, there should be a security Aωit paying 1 at time t in the
event ωit and 0, otherwise. Let ρA : Ω →

∏
t∈NR+ denote the payoff of asset

A. For each agent i, let āi
(
Aωit

)
be this individual’s initial endowment with

asset Aωit . The payoffs of the securities of which the agent has positive initial
endowment are measurable w.r.t. his awareness partition. That is, we can write
ρA

ωit

: Ωi →
∏
t∈N
R+.

We will allow agent i to trade only in securities he is aware of, that is,
securities such that their payoffs are measurable w.r.t.

(
Ωi;F i

)
. More precisely

Definition 17 The set of assets of which i is aware, Ai is defined as:

Ai =
{
A ∈ A such that the payoff of A is measurable w.r.t.

(
Ωi;F i

)}
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The method of construction of an effectively complete market described here
will, in general, produce a greater number of securities than those necessary
to span the market. In particular, this will be true whenever there are some
fully aware agents and some partially aware agents. From the perspective of
a fully aware agent, all assets other than the usual Arrow securities can be
replicated with a portfolio built up from the Arrow securities. The generalized
Arrow securities required for partially aware agents to perceive a spanning set
are therefore redundant. In general, redundant securities give rise to potential
arbitrage opportunities. In equilibrium, however, all such opportunities are
eliminated.
We will now define, in more detail, an arbitrage-free equilibrium for an econ-

omy with nested partitions:

Definition 18 An equilibrium with differential unawareness and an effectively
complete asset structure A is a portfolio allocation

(
ai
)
i∈I and an integrable

asset price system (qA)A∈A such that each agent i chooses a portfolio consisting
only of assets in Ai so as to maximize his expected utility such that the budget
constraint holds:

ai = arg max


ui
(
ai (σ0)

)
+
∑∞
t=1 β

t
i

∑
ωit∈Ωit

πi
(
ωit
)
ui
(∑

A∈Ai a
i (A) ρA

(
ωit
))

s.t.
∑
A∈Ai qAa

i (A) ≤
∑
A∈Ai qAā

i (A)∑
A∈Ai a

i (A) ρA
(
ωit
)
≥ 0 for all ωit ∈ Ωi


and asset markets clear:

n∑
i=1

ai (A) =

n∑
i=1

āi (A) ∀A ∈ A

We will now show that, for given initial endowments, we can replicate some
of the equilibria (and thus also the associated survival results) obtained in Sec-
tion 4 by an asset market equilibrium. The key idea is to replicate the initial
endowments with a portfolio of assets from an effectively complete asset struc-
ture.

Proposition 19 Consider an economy with a maximally aware agent i ∈ I
whose awareness partition Ωi is finer than that of any other agent. Let e1...en

be the agents’initial endowments and let c1...cn be the equilibrium consumption
streams in this economy. Then there exists an effectively complete asset mar-
ket structure and endowments with initial asset holdings ā1...ān such that the
equilibrium consumption in the resulting economy is also given by c1...cn.

Proposition 20 Consider an economy with two agents i and j with non-nested
partitions, Ωi and Ωj and initial endowments ei and ej. If ci and cj are the
equilibrium consumption streams in the economy, there exists an effectively com-
plete asset structure and endowments with assets ai, aj such that the equilibrium
consumption in the resulting economy is also given by ci and cj.
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Propositions 19 and 20 show that the main results of our analysis in Section
4 will remain unchanged, as long as markets are effectively complete and agents
are restricted to hold securities they are aware of. In particular, Proposition 19
includes the economies considered in Propositions 7 and 14 as a special case,
whereas Proposition 20 derives the result for the special case of Proposition 13
when |I| = 2. In these cases, the introduction of assets into the economy will
leave the equilibrium as well as the survival results unchanged. In particular, if
the unawareness of an agent is relevant in the limit, that is, if there is an asset in
this economy available in positive supply, with different payoffs in states among
which the partially aware agent cannot distinguish even as the time goes to
infinity, then in equilibrium, this asset will be allocated to an agent with a finer
partition. Such an agent will then survive, regardless of how his beliefs and
discount factor compare to those of the partially aware agent.
Note, however, that our result does not encompass the case of |I| > 2 of

Proposition 13. In particular, the example on p. 7 of Quiggin and Siddiqi (2015)
shows that with 3 agents with non-nested awareness partitions, an economy with
an effectively complete asset structure might exhibit arbitrage opportunities.
In fact, the requirement that agents only hold assets with payoffs measurable
relative to their awareness structure is much more restrictive than measurability
of equilibrium consumption streams. The former imposes restrictions on the
specific trades, as well as on the final allocation. When there is no maximally
aware trader in the economy (as e.g., in the case of nested partitions), who
can insure that all trades are measurable w.r.t. the individual partitions, the
asset market equilibrium might differ from the equilibrium with consumption,
or might even fail to exist.

5.2 Increasing Awareness

In our analysis so far, we have assumed that trade occurs only once, in period
0 and agents cannot retrade the resulting equilibrium allocation, even if their
level of awareness increases with time. In our context, an increase in the level
of awareness can be interpreted as a better understanding of the underlying
uncertainty. That is, in becoming more aware, a agent learns to distinguish
between contingencies that he considered a priori identical. In this section, we
will allow the level of awareness of a agent to increase with time and will discuss
the implications for survival.
For simplicity, we will consider a one-time change in the level of awareness.

Formally, assume that at node σ∗t∗ , agent i becomes aware of a (weakly) finer
partition of his state space, call this partition, Ω∗i. Let W ∗i be the partition
over states corresponding to the increased awareness Ω∗i of agent i with a rep-
resentative element w∗i.
Let Ωσ∗

t∗
denote the set of all (infinite) paths σ∗ with initial node σ∗t∗ , and

Ω∗iσ∗
t∗
denote the set of all (infinite) paths ω∗i with initial node ωi∗t∗ such that

σ∗t∗ ∈ ωi∗t∗ . Intuitively, Ω∗iσ∗
t∗
is the set of paths i considers possible given his

increased level of awareness and given that the economy is in node σ∗t∗ .
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Becoming more aware will require the agent to assign probabilities to the
finer contingencies. Let i’s probability distribution on

(
Ω∗i;F∗i

)
be denoted by

π∗i. We will require that the revised beliefs are consistent with i’s initial beliefs
in the sense that:

πi
(
ωit
)

=
∑

{ω∗it ∈Ω∗i|ω∗it ∈ωit}
π∗i
(
ω∗it
)
.

In particular, the revised beliefs will be consistent while satisfying the i.i.d.
property if

π∗i
(
w∗i | ω∗it

)
= π∗i

(
w∗i
)
and (5)

πi
(
wi
)

=
∑

{w∗i∈W∗i|w∗i∈wi}

π∗i
(
w∗i
)

for all ω∗it . Note, however that the beliefs on the finer partition π
∗i are not

uniquely determined by the initial beliefs.
At σ∗t∗ , agents might want to reoptimize taking into account this finer parti-

tion. To compute the new equilibrium at σ∗t∗ , we will take the initial equilibrium
allocation to be the agents’initial endowment and will compute the new alloca-
tion and the new equilibrium prices for the economy that starts at σ∗t∗ , taking
into account that the consumption of agent i now has to be measurable w.r.t.
the finer partition Ω∗i. To make sure that this reoptimization is meaningful, we
will make the following assumption:

Assumption 4 Either all agents in the economy are aware of σ∗t∗ , or the agents’
partitions are nested, at least one of the agents in the economy is aware
of σ∗t∗ and, for each k ∈ I who is unaware of σ∗t∗ and every σt ∈ ω∗kt \Ωσ∗t∗ ,
there is a σ′∗t ∈ ω∗kt ∩ Ωσ∗

t∗
such that e (σ′∗t ) ≤ e (σt).

Consider, for example, the economy from Example 3 consisting of Ann and
Bob and assume that endowments are i.i.d. over time. While there is no node
besides σ0 of which both agents are aware, at every node σt, Ann is aware of the
node. Furthermore, since the economy is i.i.d., we know that if σt ∈ ω∗Bt \Ωσ∗t∗
and σ∗′t ∈ ω∗Bt ∩ Ωσ∗

t∗
, then st ∈ {s1; s3} iff s∗

′

t ∈ {s1; s3} (and st ∈ {s2; s4} iff
s′∗t ∈ {s2; s4}). In the former case, e (σt) ∈ {2; 3} and choosing σ∗′t =

(
σ∗′t−1; s3

)
implies e (σt) ≥ min {2; 3} = e (σ′∗t ). In the latter, e (σt) ∈ {3; 4} and choosing
σ∗′t =

(
σ∗′t−1; s2

)
implies e (σt) ≥ min {4; 3} = e (σ′∗t ). Hence, in this economy

every node satisfies the condition imposed on σ∗t∗ .

Remark 21 Consider an economy with i.i.d. endowments, that is e (σt; s) =
e (σ′t′ ; s) for all σt, σ

′
t′ ∈ Ω. It will satisfy Assumption 4 for every σ∗t∗ .

Definition 22 Let
(
ci
)
i∈I be an equilibrium allocation of the economy with

coarse contingencies. An equilibrium with increased awareness
(
Ω∗i
)
i∈I at σ

∗
t∗ is

an integrable price system (p∗ (σt))σt∈Ω∗ and consumption streams
(
c∗i;

(
cj
)
j 6=i

)
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defined on Ω such that (i) all consumers i are maximizing their expected utility
subject to their budget constraint and awareness partition and (ii) markets clear:

c∗i = arg max
c∗i


ui
(
ci (σ∗t∗)

)
+
∑∞
t=t∗ β

t
i

∑
ω∗it ∈Ω∗i

σ∗
t∗
π∗i
(
ω∗it
)
ui
(
c∗i
(
ω∗it
))

s.t.
∑
t≥t∗

∑
ω∗it ∈Ω∗i

σ∗
t∗

∑
σ∗t∈ω∗it

p∗ (σt) c
∗i (ω∗it )

≤
∑
t≥t∗

∑
ωit∈Ωi

σ∗
t∗

∑
σt∈ωit

p∗ (σt) c
i
(
ωit
)


I∑
i=1

c∗i (σt) =

I∑
i=1

ci (σt) ∀σt ∈ Ω∗σ∗
t∗
.

Proposition 23 Under Assumptions 1—4, an equilibrium with increased aware-
ness exists. Furthermore, in such an equilibrium p (σt) = 0 for all σt 6∈ Ωσ∗

t∗
.

Hence, the equilibrium consumption can be characterized by the f.o.c.:

u′i
(
ci
(
ω∗it
))

βiπ
i
(
ω∗it+1 | ω∗it

)
u′i
(
ci
(
ω∗it+1

)) =
p∗
(
ω∗it
)

p∗
(
ω∗it+1

) =:

∑
σ∗t∈ω∗it ∩Ωσ∗

t∗
p∗ (σ∗t )∑

σ∗t+1∈ω∗it+1∩Ωσ∗
t∗
p∗
(
σ∗t+1

) .
We can now discuss the survival of an agent whose awareness has increased.

As we know from Section 4, given identical discount factors, the revised beliefs
π∗i will play a crucial role for i’s survival. The next result follows directly from
Proposition 11:

Corollary 24 Suppose that the economy satisfies Assumptions 1—3. Consider
a population of agents with nested partitions Ω1 strictly finer than Ω2... strictly
finer than Ωn, such that agent 2’s unawareness is relevant in the limit. Let
σ∗t∗ ∈ Ω satisfy Assumption 4. Suppose that at σ∗t∗ agent i > 1’s awareness
increases to Ω∗i, such that the new set of partitions satisfies the nested property.
If all agents have correct beliefs and identical discount factors, then

1. if i’s revised probability distribution π∗i satisfies (5) and is correct, then i
survives a.s.;

2. if i’s revised probability distribution π∗i satisfies (5) and is incorrect, then
i vanishes a.s..

To understand the result, note that three cases are possible. First, i’s new
level of awareness can be the finest in the population. However, since the un-
awareness of agent 1 is not relevant in the economy, agent i can survive iff he
adopts correct beliefs on the finer partition. Second, i’s new awareness partition
could coincide with Ω1 . In this case, since agent 1 has correct beliefs, i can
survive iff he also adopts correct beliefs. Finally, if Ω∗i is coarser than Ω1, then
we can use Proposition 9 to conclude that i will disappear relative to agent 1
unless i adopts correct beliefs.
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We thus conclude that an agent who has become more aware will only survive
if he simultaneously adopts correct beliefs on the finer partition. However, we
will now show that becoming more aware makes it "harder" to form correct
beliefs, in a sense we will make precise. Recall that for a partially aware agent
i with a state partition W i to have correct beliefs, it is necessary and suffi cient
that πi

(
wi
)

=
∑
s∈wi π (s) for all wi ∈W i. In particular, a fully unaware agent,

for whom W i = {{s ∈ S}} trivially has correct beliefs and survives.
Denoting by∆|S|−1 the simplex of all probability distributions over the states

in S, let

P
(
W i
)

=

{
π̃ ∈ ∆|S|−1 | π̃

(
wi
)

=
∑
s∈wi

π (s) for all wi ∈W i

}

be the set of all probability distributions over S the restriction of which to
W i implies that an agent with this partition has correct beliefs. Note that(
π (s)s∈S

)
∈ P

(
W i
)
always holds, and whenever W i 6=

{
{s}s∈S

}
, P

(
W i
)
is

not a singleton. Furthermore, we have:

Lemma 25 For any W ∗i strictly finer than W i,

P
(
W ∗i

)
⊂ P

(
W i
)

and P
(
W ∗i

)
has a Lebesgue measure 0 relative to P

(
W i
)
.

It is in that sense that for an agent whose awareness increases adopting
correct beliefs on the new partition might not be straightforward: unless the
agent has a good understanding of the underlying uncertainty, guessing the
correct distribution within the set P

(
W i
)
is a 0-probability event. Hence, even

though an increase in agent’s awareness increases his welfare as long as his beliefs
remain correct (see Proposition 8), the requirement that the revised beliefs be
correct is hardly innocuous.
We next consider an agent who adopts a prior over a set of possible distri-

butions and tries to use Bayesian updating to learn the correct one. In this
case, the agent’s beliefs will no longer satisfy the i.i.d. property. We can use
the result of Blume and Easley (2006) to show that in general, an increase in
awareness combined with Bayesian learning of the probabilities will not allow
the agent to survive.
Suppose that upon becoming aware of Ω∗i, agent i adopts a set of "models"

Θ∗i, that is, a set of i.i.d. processes on Ω∗i containing the true process. Each
element of Θ∗i is thus a probability distribution

(
θ
(
w∗i
))
w∗i∈W∗i and there is

a true model, θtrue ∈ Θ∗i such that θtrue
(
w∗i
)

=: π
(
w∗i
)
for all w∗i ∈ W ∗i.

We will assume that the set of models Θ∗i is open and bounded and thus,
satisfies Assumption 5 of Blume and Easley (2006). We then obtain the following
Corollary to Blume and Easley (2006), Theorem 5:

Corollary 26 Suppose that the economy satisfies Assumptions 1—3. Consider
a population of agents with nested partitions Ω1 strictly finer than Ω2... strictly
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finer than Ωn. Let σ∗t∗ ∈ Ω satisfy Assumption 4. Suppose that at σ∗t∗ agent
i < 1’s awareness increases to Ω∗i = Ωi−1. If all agents have correct beliefs and
identical discount factors and if i adopts a prior on the set of models Θ∗i which
is absolutely continuous w.r.t. the Lebesgue measure and updates it according to
Bayesian rule, i vanishes a.s. relative to i− 1.

We thus obtain a ‘paradox of ignorance’, similar to that attributed to Socrates.7

Even though an increase in awareness leads to an increase in the agent’s welfare,
from the point of view of survival, having partial knowledge about the world
might be preferable to being a Bayesian who is assigning probabilities in an
ill-informed way. More generally, we have shown that while markets with more
aware agents provide more opportunities for risk-sharing, they also pose greater
risk for the survival of traders who might misjudge probabilities.

6 Concluding Comments

The standard model of financial markets is one in which all agents are rational
and this fact is common knowledge. Assuming common priors, no agents can
consciously disagree (Aumann 1976). It is natural, therefore to consider whether
the assumption of common priors can be modified. The analysis of Blume and
Easley shows that, if all agents are rational, in the sense that they are aware
of all possible contingencies, then differences in prior beliefs are, ultimately,
irrelevant since only agents with correct beliefs will survive.
We have shown, by contrast, that the presence of differential awareness allows

for the survival of agents with both differing beliefs and differing awareness.
On the one hand, more aware agents may survive, even when their beliefs are
less accurate than those of others. Conversely, less aware agents (those with
a coarser partition of the state space) will survive if their beliefs regarding the
coarser state space that they perceive are accurate. Moreover, the cognitive and
information requirements to form accurate beliefs about a coarse partition of the
state space are less demanding than the requirements for accurate probabilities
regarding the full set of economically relevant states. In particular, agents with
non-stochastic endowments and minimal awareness who invest only in bonds,
will survive a.s., though they will forgo consumption opportunities available
from insuring others.
This analysis leaves open the question of how differences in prior beliefs

should be modelled. One possibility is that agents display reduction unaware-
ness in the sense of Grant and Quiggin (2014) in the sense that they fail to
consider some possible contingencies. Differential awareness in the sense of re-
duction will, in general, give rise to different prior beliefs regarding the reduced
state space under consideration. These issues are addressed in a companion
paper (Guerdjikova and Quiggin 2016).

7On being told that an oracle had named him the wisest of the Greeks, Socrates is said to
have replied that his wisdom consisted of knowing that he knew nothing.
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7 Appendix

Proof of Proposition 2:
An equilibrium of the economy exists under the following conditions (Bewley

1972):

1. the consumption sets are convex, Mackey-closed and contained in the set
of essentially bounded measurable functions;

2. the preferences of the agents are complete and transitive;

3. the better sets are convex and Mackey-closed;

4. the worse sets are closed in the norm topology;

5. there exists a set of paths with strictly positive measure such that the
preferences of all agents satisfy strict monotonicity on this set, that is
adding a constant to the payoff in each state and each period makes the
agent strictly better off; and

6. for all agents, the initial endowments are in the interior of the consump-
tions sets.

We can assume that the consumption set of a agent i ∈ {1 . . . I} is given
by the sets of all essentially bounded measurable functions on Ωi and, hence,
satisfies condition 1. We can then define the function V i0

(
ci
)
on the set of all

essentially bounded measurable functions on Ω, while the measurability restric-
tion w.r.t. Ωi is imposed by the consumption set of i. Condition 2 is then
trivially satisfied. The convexity requirement in condition 3 follows from the
concavity of the utility function ui. Further, V i0 is uniformly continuous and,
hence, continuous w.r.t. the Mackey topology. This means that both the better
and the worse sets are closed w.r.t. the Mackey topology, and, hence, also in
the norm topology. The second requirement in conditions 3 and 4 are therefore
satisfied.
For condition 5, and an agent i, take the set of paths to be Ω. Note that

V i0 is monotonic. Take any consumption stream c. Adding a positive amount
to c strictly improves the act. Hence, the preferences of all agents are strictly
monotonic on Ω.

Finally, Assumption 2 ensures that the endowment stream of each agent
is uniformly bounded away from 0 and from infinity, and is, therefore, in the
interior of this agent’s consumption set, thus implying condition 6 We conclude
that an equilibrium of the economy exists.
Note that the measurability condition on i’s consumption ensures that

u′i
(
ci (σt)

)
= u′i

(
ci (σ′t)

)
for all σt, σ′t ∈ Ωit. If p(·) is an equilibrium price system, then condition (2)

u′i
(
ci
(
ωit
))

βiπ
i
(
ωit+1 | ωit

)
u′i
(
ci
(
ωit+1

)) =
p
(
ωit
)

p
(
ωit+1

) =

∑
σt∈ωit

p (σt)∑
σt+1∈ωit+1

p (σt+1)
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is the first-order condition of agent i’s maximization problem at state σt. Hence,
it will be satisfied in any equilibrium in which agent i chooses an interior al-
location on all finite paths with positive probabilities. We now show that As-
sumptions 1—3 imply that the optimal consumption streams of all agents will
be strictly positive on all finite paths which have positive probability. To show
this, we demonstrate that the marginal rate of substitution between consump-
tion at σ0 and ωt will always be strictly positive and finite, provided that the
true probability of ωt is positive.

Since the initial endowment is uniformly bounded above, so are all the con-
sumption streams in equilibrium. Hence, by Assumption 1, u′i is always strictly
positive. Furthermore, setting c (σ0) = 0 is not optimal, since, by Assump-
tion 2, endowment is uniformly bounded away from 0 and by Assumption 1,
u′ (0) =∞. Take an arbitrary ωit such that π

(
ωit
)
> 0, and hence, by Assump-

tion 3, πi
(
ωit
)
> 0. If c (ωt) = 0, and if p (σ0), p (ωt) > 0, an iteration on (2)

gives

MRSi
(
ci (σ0) ; ci (ωt)

)
=

u′i
(
ci (σ0)

)
βtiπ

i
(
ωit
)
u′i
(
ci
(
ωit
)) = 0 <

p (σ0)

p (ωt)
,

which cannot hold in the optimum. Hence, ci (ωt) = 0 can only obtain if
πi (ωt) = 0, or, by Assumption 2, if π (ωt) = 0. We thus obtain that i will have
strictly positive consumption on all finite paths which have positive probability
w.r.t. the truth. This, in turn implies that the first order condition will hold
on all such paths.
Derivations for Example 3:
Claim 1: Neither of the two agents is insured against idiosyncratic risk in

equilibrium.
Proof of Claim 1:
Let uA(·) and uB(·) be A’s and B’s concave von Neumann—Morgenstern

utility. Standard expected utility maximization then gives the f.o.c’s for Ann:

u′A
(
cA (s)

)
π (s)

u′A (cA (s′))π (s′)
=

ps
ps′

for s , s′ ∈ {1 . . . 4}

and for Bob (since cB (s1) = cB (s3), cB (s2) = cB (s4))

u′B
(
cB (s1)

)
(π (s1) + π (s3))

u′B (cB (s2)) (π (s2) + π (s4))
=
p1 + p3

p2 + p4
.

Combining these, we obtain:

u′B
(
cB (s1)

)
(π (s1) + π (s3))

u′B (cB (s2)) (π (s2) + π (s4))
=

p1

p2

1 + p3
p1

1 + p4
p2

=
u′A
(
cA (s1)

)
π (s1)

u′A (cA (s2))π (s2)

1 +
u′A(cA(s3))π(s3)

u′A(cA(s1))π(s1)

1 +
u′A(cA(s4))π(s4)

u′A(cA(s2))π(s2)

u′B
(
cB (s1)

)
(π (s1) + π (s3))

u′B (cB (s2)) (π (s2) + π (s4))
=

u′A
(
cA (s1)

)
π (s1) + u′A

(
cA (s3)

)
π (s3)

u′A (cA (s2))π (s2) + u′A (cA (s4))π (s4)
.
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Indeed, in a manner of contradiction, assume that cB (s1) = cB (s2) and note
that this implies:

u′B
(
cB (s1)

)
(π (s1) + π (s3))

u′B (cB (s2)) (π (s2) + π (s4))
=

(π (s1) + π (s3))

(π (s2) + π (s4))
=
u′A
(
cA (s1)

)
π (s1) + u′A

(
cA (s3)

)
π (s3)

u′A (cA (s2))π (s2) + u′A (cA (s4))π (s4)

=
u′A
(
3− cB (s1)

)
π (s1) + u′A

(
2− cB (s1)

)
π (s3)

u′A (3− cB (s1))π (s2) + u′A (4− cB (s1))π (s4)

> 1 ,

since

u′A
(
3− cB (s1)

)
π (s1) + u′A

(
2− cB (s1)

)
π (s3)

u′A (3− cB (s1))π (s2) + u′A (4− cB (s1))π (s4)
>

(π (s1) + π (s3))

(π (s2) + π (s4))

is equivalent to:

u′A
(
3− cB (s1)

)
π (s1) (π (s2) + π (s4)) + u′A

(
2− cB (s1)

)
π (s3) (π (s2) + π (s4))

> u′A
(
3− cB (s1)

)
π (s2) (π (s1) + π (s3)) + u′A

(
4− cB (s1)

)
π (s4) (π (s1) + π (s3))

[
u′A
(
3− cB (s1)

)
− u′A

(
4− cB (s1)

)]
π (s1)π (s4) +

[
u′A
(
2− cB (s1)

)
− u′A

(
4− cB (s1)

)]
π (s3)π (s4)

+
[
u′A
(
2− cB (s1)

)
− u′A

(
3− cB (s1)

)]
π (s2)π (s3) > 0

which is always satisfied, since u′A is a decreasing function. We thus obtain a
contradiction to the assumption that B is fully insured against idiosyncratic
risk in equilibrium.
Claim 2: If

π (s1)π (s2)− π (s3)π (s4) ≤ 0 (6)

A’s expected consumption is higher than her expected initial endowment.
Proof of Claim 2:
From the fact that B’s utility function is concave and thus, B partially

insures against risk, it follows that the equilibrium consumption of A satisfies:
cA (s1) < 2, cA (s2) > 1, cA (s3) < 1, cA (s4) > 2 with

cA (s4) = 4− cB (s2) > cA (s1) = 3− cB (s1) >

> cA (s2) = 3− cB (s2) > cA (s3) = 2− cB (s1)

From A’s f.o.c. we then conclude that the equilibrium prices satisfy:

p∗4
π (s4)

<
p∗1

π (s1)
<

p∗2
π (s2)

<
p∗3

π (s3)
.

Suppose to the contrary of Claim 2 that

Eπ
[
cA (s)

]
< Eπ

(
eA (s)

)
= 2π (s1) + π (s2) + π (s3) + 2π (s4) ,
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and, hence,[
3− cB (s1)

]
π (s1) +

[
2− cB (s1)

]
π (s3) +

[
3− cB (s2)

]
π (s2)

+
[
4− cB (s2)

]
π (s4) ≤ 2π (s1) + π (s2) + π (s3) + 2π (s4) ,

or

cB (s2) ≥ 2 +
π (s1) + π (s3)

π (s2) + π (s4)

[
1− cB (s1)

]
It follows that:

EπuA
(
cA
)

= π (s1)uA
(
3− cB (s1)

)
+ π (s3)uA

(
2− cB (s1)

)
+ π (s2)uA

(
3− cB (s2)

)
+π (s4)uA

(
4− cB (s2)

)
≤ π (s1)uA

(
2 +

(
1− cB (s1)

))
+ π (s3)uA

(
1 +

(
1− cB (s1)

))
+π (s2)uA

(
1− π (s1) + π (s3)

π (s2) + π (s4)

(
1− cB (s1)

))
+ π (s4)uA

(
2− π (s1) + π (s3)

π (s2) + π (s4)

(
1− cB (s1)

))

< (π (s1) + π (s4))uA

(
2 +

(
1− cB (s1)

)( π (s1)π (s2)− π (s3)π (s4)

(π (s2) + π (s4)) (π (s1) + π (s4))

))
+ (π (s2) + π (s3))uA

(
1 +

(
π (s3)π (s4)− π (s1)π (s2)

(π (s2) + π (s4)) (π (s2) + π (s3))

)(
1− cB (s1)

))
Since cB (s1) > 1, for

π (s1)π (s2)− π (s3)π (s4) ≤ 0 ,

this is a mean-preserving spread of the initial endowment and we have

EπuA
(
cA
)
< EπuA

(
eA
)
,

in contradiction to utility maximization.
Claim 3: It is impossible to ensure all agents in the economy against idio-

syncratic risk.
Proof of Claim 3:
Indeed, suppose to the contrary that ci (s1) = ci (s2) for all agents i ∈

{A;B;C;D}. For A to be fully insured across s1 and s2, we need:

u′A
(
cA (s1)

)
u′A (cA (s2))

= 1 =
p1

p2
.

Furthermore, since C and D are fully insured across s1 and s2, the measurability
requirement on their consumption implies that they are fully insured across all
states:

ci (s1) = ci (s2) = ci (s3) = ci (s4) , i ∈ {C;B} ,

and hence,
u′B
(
cB (s3)

)
u′B (cB (s4))

=
p1 + p3

p2 + p4
,
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or p3 = p4. But this would imply that

u′i
(
ci (s3)

)
u′i (ci (s4))

=
p3

p4
= 1 ,

or that both A and D have to be fully insured across states s3 and s4, which is
impossible.
Claim 4: In general, A and D will not be fully insured against idiosyncratic

risk in equilibrium.
Proof of Claim 4:
To give an example, suppose that ui (c) = ln c for i ∈ {A;B;D}, whereas

uC (c) = c
1
2 . Suppose that A and D were fully insured against idiosyncratic

risk, then by the same argument as above p1 = p2 =: p. Since B and C are
risk-averse, they will try to smooth consumption across the states they perceive.
Hence, in equilibrium, their consumption will satisfy:

2 > cB (s2) = cB (s4) > cB (s1) = cB (s3) > 1

2 > cC (s1) = cC (s4) > cC (s2) = cC (s3) > 1

But then,

cA (s1) =
6− cB (s1)− cC (s1)− cD (s1)

2
=

6− cB (s2)− cC (s2)− cD (s1)

2
= cA (s2)

and we obtain
cB (s1) + cC (s1) = cB (s2) + cC (s2) . (7)

The demand functions of B and C satisfy:

cB (s1) = cB (s3) =
3p+ p3 + 2p4

2 (p3 + p)

cB (s2) = cB (s4) =
3p+ p3 + 2p4

2 (p4 + p)

cC (s2) = cC (s3) =
3p+ p3 + 2p4

2p+ p3 + p4

(p+ p4)

(p+ p3)

cC (s1) = cC (s4) =
3p+ p3 + 2p4

2p+ p3 + p4

(p+ p3)

(p+ p4)

and substituting into (7), we obtain:

3p+ p3 + 2p4

2 (p3 + p)
+

3p+ p3 + 2p4

2p+ p3 + p4

(p+ p3)

(p+ p4)
=

3p+ p3 + 2p4

2p+ p3 + p4

(p+ p4)

(p+ p3)
+

3p+ p3 + 2p4

2 (p4 + p)

W.l.o.g., we can normalize 3p+ p3 + 2p4 = 1 and simplify to:

2p (p3 − p4) = (p4 − p3) (p4 + p3) .
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Since the only solution of this equation is p3 = p4, it follows that

cA (s3) = cA
(
s4
)

cD (s3) = cD
(
s4
)

cB (s3) = cB (s4)

cC (s3) = cC (s4) ,

in contradiction to the existence of aggregate risk.
To simplify the proofs of the following results, we state and prove the fol-

lowing:

Lemma 27 Consider two agents i and j such that j is fully aware and i is
partially aware. In equilibrium, for any path ωi,

lim
T→∞

1

T + 1
ln

u′i
(
ci
(
ωiT+1

))(∑
σ̃T+1∈ωiT+1

u′j (cj (σ̃T+1))πj
(
σ̃T+1 | ωiT+1

))
= lim

T→∞
ln
βj
βi

+

(∑
wi

π
(
wi
)

ln
π
(
wi
)

πi (wi)
−
∑
wi

π
(
wi
)

ln
π
(
wi
)

πj (wi)

)
.

Proof of Lemma 27:
We will use the analogue of the Blume and Easley (2006) decomposition.

Applying condition (2) to two agents, i, who is partially aware and j, who is
fully aware gives:

u′i
(
ci (σ0)

)
βiu
′
i

(
ci
(
ωiT+1

))
πi
(
ωiT+1

) =
u′j
(
cj (σ0)

)
βj
∑
σ̃T+1∈ωiT+1

u′j (cj (σ̃T+1))πj (σ̃T+1)
.

Hence,

u′i
(
ci (σ0)

)
βiu
′
i

(
ci
(
ωiT+1

))
πi
(
ωiT+1

) =
u′j
(
cj (σ0)

)
βjπ

j
(
ωiT+1

)∑
σ̃T+1∈ωiT+1

u′j (cj (σ̃T+1))πj
(
σ̃T+1 | ωiT+1

) ,
which reduces to:

u′i
(
ci
(
ωiT+1

))∑
σ̃T+1∈ωiT+1

u′j (cj (σ̃T+1))πj
(
σ̃T+1 | ωiT+1

) =
βj
βi

πj
(
ωiT+1

)
πi
(
ωiT+1

) u′i (ci (σ0)
)

u′j (cj (σ0))

=
u′i
(
ci (σ0)

)
u′j (cj (σ0))

T+1∏
t=1

βj
βi

πj
(
wit
)

πi
(
wit
)

and we obtain

lim
T→∞

1

T + 1
ln

u′i
(
ci
(
ωiT+1

))∑
σ̃T+1∈ωiT+1

u′j (cj (σ̃T+1))πj
(
σ̃T+1 | ωiT+1

) = lim
T→∞

ln
βj
βi

+ lim
T→∞

1

T + 1

T+1∑
t=1

ln
πj
(
wit
)

πi
(
wit
)

+ lim
T→∞

1

T + 1
ln
u′i
(
ci (σ0)

)
u′j (cj (σ0))

.
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Since u′i
(
ci (σ0)

)
and u′j

(
cj (σ0)

)
are finite, the third term on the r.h.s. con-

verges to 0, furthermore,

lim
T→∞

1

T + 1
ln

u′i
(
ci
(
ωiT+1

))∑
σ̃T+1∈ωiT+1

u′j (cj (σ̃T+1))πj
(
σ̃T+1 | ωiT+1

)
= lim

T→∞
ln
βj
βi

+ lim
T→∞

1

T + 1

T+1∑
t=1

(
lnπj

(
wit
)
− lnπ

(
wit
))

+

+ lim
T→∞

1

T + 1

T+1∑
t=1

(
lnπ

(
wit
)
− lnπi

(
wit
))
.

Since ln
πj(wit)
π(wit)

and ln
π(wit)
πj(wit)

are i.i.d and are equal in expectations to the

relative entropy of i’s and j’s beliefs w.r.t. the truth, we obtain that a.s.,

lim
T→∞

1

T + 1
ln

u′i
(
ci
(
ωiT+1

))∑
σ̃T+1∈ωiT+1

u′j (cj (σ̃T+1))πj
(
σ̃T+1 | ωiT+1

)
= lim

T→∞
ln
βj
βi

+

( ∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi (wi)
−

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj (wi)

)
.

Proof of Proposition 6:
Using Lemma 27 and replacing the original state space Ω by the common

partition, Ω, we obtain that for two such agents, i and j, with βi > βj :

lim
T→∞

1

T + 1
ln
u′i
(
ci (ωT+1)

)
u′j (cj (ωT+1))

= lim
T→∞

ln
βj
βi

< 0

and hence u′j
(
cj (ωT+1)

)
→∞, or cj (ωT+1)→ 0.

When beliefs differ,

lim
T→∞

1

T + 1
ln
u′i
(
ci (ωT+1)

)
u′j (cj (ωT+1))

= lim
T→∞

ln
βj
βi

+ lim
T→∞

1

T + 1

T+1∑
t=1

ln
πj (wt)

πi (wt)

and both beliefs and the actual distribution over states of the world are i.i.d.,

lim
T→∞

1

T + 1
ln
u′i
(
ci (ωT+1)

)
u′j (cj (ωT+1))

= ln
βj
βi

+

( ∑
w∈W i

π (w) ln
π (w)

πi (w)
−
∑
w∈W i

π (w) ln
π (w)

πj (w)

)
.

Hence, for equal discount factors, the agent whose beliefs w.r.t. the common
partition are closer to the truth survives, while the other vanishes. When both
discount factors and beliefs differ, we conclude that lower discount factors can
be offset by having beliefs closer to the truth and vice versa. In particular, if

ln
βj
βi

+

(∑
w

π (w) ln
π (w)

πi (w)
−
∑
w

π (w) ln
π (w)

πj (w)

)
< 0 ,
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u′j
(
cj (ωT+1)

)
→∞, or cj (ωT+1)→ 0 and j vanishes.

Proof of Propositions 7 and 9:
We first prove Proposition 9 and then use the result to prove Proposition 7.

Suppose that agent i has the coarser partition. We can again use the proof of
Lemma 27 by replacing the original state space by the finer of the two partitions,
Ωj . We conclude that

lim
T→∞

1

T + 1
ln

u′i
(
ci
(
ωiT+1

))(∑
ω̃jT+1∈ωiT+1

u′j

(
cj
(
ω̃jT+1

))
πj
(
ω̃jT+1 | ωiT+1

)) (8)

= ln
βj
βi

+

( ∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi (wi)
−

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj (wi)

)
.

Since consumption is finite, and hence, u′j
(
cj
(
ω̃jT+1

))
cannot become 0, and

since the sum of the probabilities in the denominator is 1, if

ln
βj
βi

+

( ∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi (wi)
−

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj (wi)

)
> 0 ,

i vanishes a.s.
We now turn to proving Proposition 7. Note that the r.h.s. of (8) equals

0. Take a path σt and assume that, on this path only, the agent with the
finest partition j survives, whereas all agents with coarser partitions, i 6= j
vanish. It follows that an agent i 6= j also vanishes on the set of paths ωi such
that σ ∈ ωi. Hence, the numerator on the l.h.s. of (8) would converge to ∞,
whereas the denominator remains finite and the l.h.s. would be strictly positive,
a contradiction. Hence, at least one of the partially aware agents has to survive
on σ.
We can rewrite condition (8) equivalently for any two agents whose partitions

are nested. Hence, if an agent with a coarser partition, i, survives (and hence,
the numerator is finite), then the denominator has to remain finite as well. So
any agent j with finer partitions than agent i can only vanish on an event with
probability 0 relative to their beliefs, or (since j’s beliefs are correct) on a 0-
probability event w.r.t. the truth. We thus conclude that the agent with the
finest partition j survives a.s.. Now consider an agent i with a coarser partition
than j. Since j survives a.s. w.r.t. the truth, and thus, w.r.t. his own beliefs,
the denominator of (8) w.r.t. i and j is finite a.s.. It then follows that i also
survives a.s..
Proof of Proposition 8:
At the equilibrium prices, i’s and j’s optimization problems are given by

(1). Endowments, discount factors and utility functions coincide. Further,
beliefs coincide on the common partition representing contingencies of which
both are aware. Hence, the only difference between the two problems concerns
the measurability requirements: cj has to be measurable relative to

(
Ωj ;F j

)
,

whereas ci has to be measurable relative to the finer
(
Ωi;F i

)
. Rewriting j’s
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problem as:

arg max
cj


u
(
cj (σ0)

)
+
∑∞
t=1 β

t∑
ωit∈Ωit

πi
(
ωit
)
u
(
cj
(
ωit
))

s.t.
∑
t∈N
∑
ωit∈Ωit

∑
σt∈ωit

p (σt) c
j
(
ωit
)

≤
∑
t∈N
∑
ωit∈Ωit

∑
σt∈ωit

p (σt) e
(
ωit
)

cj
(
ωit
)

= cj
(
ω′it
)
whenever ωit, ω

′i
t ∈ ω

j
t for some ω

j
t


shows that i and j can be viewed as maximizing the same utility function at the
same equilibrium prices and at the same initial endowment, but i has a strictly
larger choice set than j. Hence, V i0

(
ci
)
≥ V j0

(
cj
)
obtains in equilibrium.

Proof of Proposition 11:
We will first show that if the unawareness w.r.t. partition Ωk̃ in the economy

is relevant, at least one of agents 1 . . .
(
k̃ − 1

)
has to survive. In particular,

assume that only agents with indices k ≥ k̃ with i the minimal of these indices
survive on a given path ωi. According to Definition 10, there are s and s′ ∈
wk̃ ⊆ wi and ε > 0 such that for any σ, σ′ ∈ ωk̃ ⊆ ωi,

lim
t→∞

sup [e (σt; s)− e (σ′t; s
′)] > ε .

Since for every k > i, k’s consumption is measurable w.r.t. ωi and since the
partitions are nested, we have that for every t, every σt ∈ ωit and s′ ∈ wit+1,∑

k≥i
ck
(
ωit+1

)
≤ e (σt; s

′) , (9)

and hence, for every σ ∈ ωi, on which states s and s′ occur infinitely often,

lim
T→∞

sup
∑
j<i

cj (σT ) = lim
T→∞

sup

e (σT )−
∑
k≥i

ck (σT )


≥ lim

T→∞
sup [e (σT )−min e (σT−1; s′)]

≥ lim
T→∞

sup [e (σT−1; s)− e (σT−1; s′)] > ε.

Since s occurs infinitely often on almost every path σ ∈ ωi, and since there is a
finite number of agents in the economy, and since the unawareness of all agents
with indices larger than k̃ − 1 is relevant in the limit, at least one of the agents
j ≤ k̃ − 1 must survive a.s. on ωi.

Let i ∈
{

1 . . .
(
k̃ − 1

)}
survive a.s.. Consider the agents j < i.

Suppose first that i = 2 and hence j = 1. Since j’s unawareness is irrelevant
in the limit, the total endowment of the economy, as well as the consumption of
all other agents than j are measurable w.r.t. i’s partition in the limit. Hence,
so must be j’s consumption and

lim
T→∞

sup
∑

ω̃jT+1∈ωiT+1

u′j

(
cj
(
ω̃jT+1

))
πj
(
ω̃jT+1 | ω

i
T+1

)
= lim
T→∞

supu′j
(
cj
(
ωiT+1

))
.
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It follows that j’s consumption will converge to 0 a.s. whenever j’s survival
index is strictly smaller than that of i. Hence, j will survive a.s., whenever his
beliefs and discount factor are identical to that of i and vanish a.s. if his survival
index is lower than that of i.
We now proceed by induction. Suppose that we have shown for i = κ that

agent j < i vanishes a.s. if his survival index is lower than that of i and survives
a.s. only if his discount factor and beliefs are equal to those of i. Consider
i = κ+ 1.
Since, in the limit, the total consumption in the economy has to be mea-

surable relative to i’s partition and since agent 2’s consumption has to be mea-
surable relative to his partition, in the limit, agent 1’s consumption has to be
measurable relative to agent’s 2 partition. Consider first the case in which agent
1’s survival index is lower than that of agent 2. We can then use the argument
from the proof of Proposition 6 to show that 1 vanishes a.s. relative to 2. Then
we are back to the case where i = κ,. So, the rest of the agents survive a.s. if
their survival indexes are equal to that of i and vanish a.s. otherwise.
Assume, therefore, that agent 1’s survival index is equal to that of agent 2

and hence, their beliefs and discount factors are identical. The argument from
the proof of Proposition 6 shows that 2 survives a.s. on an event if and only if 1
survives on this event. Hence, either 1 and 2 both vanish a.s., in which case we
are back to the case i = κ − 2, or they both survive with positive probability.
Since their discount factors and beliefs on the coarser partition of agent 2 are
identical, β1 = β2,.π

1
(
w2
)

= π2
(
w2
)
for all w2 ∈ W 2 and since, in the limit,

the consumption of both 1 and 2 is measurable w.r.t. 2’s awareness partition,
in the limit, we can aggregate these two agents into one with a utility function,
u12 =: αu1 + (1− α)u2 for some α. Furthermore, in the limit, the equilibrium
consumption of this agent will be measurable w.r.t. to 3’s partition. We can
thus write (8) for the aggregate of 1 and 2, and 3 and repeat the argument from
above. Proceeding iteratively, we can thus show that under the conditions of the
proposition, 1 can only survive with positive probability if the discount factors
and the beliefs of all the agents 1...i − 1 are identical. If this is the case, then
all agents will survive a.s. on the same event on which 1 survives. Since agent
i survives a.s., and since the total consumption of the agents 1...i− 1 has to be
measurable relative to i’s partition in the limit, we conclude from Proposition 6
that the aggregate agent 1...i − 1 survives a.s. But since the number of agents
is finite, this implies that at least one of the agents survives a.s. Hence, so do
all the others.
If i = k̃−1, we conclude that among agents

{
1 . . .

(
k̃ − 1

)}
, only those with

discount factors and beliefs equal to those of k̃−1 survive. If, in contrast, there

is a j such that
(
k̃ − 1

)
≥ j = i+1, let i′ be the agent with the finest partition,

whose beliefs and discount factor are equal to those of i. By the same argument
as above, we can aggregate the agents i′ through i in the limit to obtain an agent
ii′, whose limit equilibrium consumption is measurable relative to j’s partition,
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since the unawareness of agents i...i′ is irrelevant in the limit. We thus obtain:

lim
T→∞

1

T + 1
ln

u′j

(
cj
(
ωjT+1

))
∑
ω̃iT+1∈ω

j
T+1

u′ii
(
cii′
(
ω̃iT+1

))
πi
(
ω̃iT+1 | ω

j
T+1

) = lim
T→∞

1

T + 1
ln
u′j

(
cj
(
ωjT+1

))
u′ii
(
cii′
(
ω̃iT+1

)) ≥ 0 .

Since all agents ii′ survive a.s., it follows that j’s beliefs and discount factor are
identical to those of i (and all i...i′). (Otherwise, ii′ would vanish a.s. relative to
j in contradiction to the assumption that agent i survives a.s.). Replacing i by
j, and repeating the argument iteratively, we conclude that if agent i survives
a.s., so do all agents i+ 1...k̃ − 1. Furthermore, the beliefs and discount factor
of agents i+ 1...k̃ − 1 have to be equal to those of i.
We thus conclude that under the conditions stated in the proposition, among

the agents
{

1 . . . k̃ − 1
}
, agent k survives a.s. ifln

βk̄−1

βk
−
∑
wk̃−1

π
(
wk̃−1

)
ln

πk
(
wk̃−1

)
πk̃−1

(
wk̃−1

)
 = 0

and vanishes a.s. otherwise. In particular, agent
(
k̃ − 1

)
survives a.s..

Now consider agent j >
(
k̃ − 1

)
. Suppose that all agents i...k̃ − 1 survive

a.s. and thus have identical discount factors and identical beliefs. Since in the
limit, their total equilibrium consumption will be measurable relative to k̃− 1’s

awareness partition, in the limit, we can aggregate them into an agent i
(
k̃ − 1

)
.

For j > k̃ − 1, we then obtain

lim
T→∞

1

T + 1
ln

u′j

(
cj
(
ωjT+1

))
∑
ω̃k̃−1T+1∈ω

j
T+1

u′
i(k̃−1)

ci(k̃−1)
(
ω̃k̃−1
T+1

)
ΠT
t=1π

k̃−1
(
w̃k̃−1
T+1 | w

j
T+1

)(10)
= lim

T→∞
ln
βk̃−1

βj
+

( ∑
wj∈W j

π
(
wj
)

ln
π
(
wj
)

πj (wj)
−

∑
wj∈W j

π
(
wj
)

ln
π
(
wj
)

πk̃−1 (wj)

)
.

Since j’s survival index is greater or equal to that of k̃ − 1, the limit on the

r.h.s. is non-positive. Since the aggregate agent i
(
k̃ − 1

)
survives a.s., and

furthermore, since his consumption is strictly positive and bounded away from
0 in the limit on at least one state s, we have that on all paths, on which s
occurs infinitely often,

lim
T→∞

inf
∑

ω̃k̃−1T+1∈ω
j
T+1

u′
i(k̃−1)c

i(k̃−1)
(
ω̃k̃−1
T+1

)
ΠT
t=1π

k̃−1
(
w̃k̃−1
T+1 | w

j
T+1

)
<∞.

Hence, if j were to vanish, the l.h.s. would remain strictly positive, whereas the
r.h.s. of (10) is non-positive, a contradiction. Hence, every j > k̃ − 1 survives
a.s..
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Proof of Proposition 13:
Note that for all agents other than j, ci (σt; s) = ci (σt; s

′) has to hold in
equilibrium. Since condition (4) is satisfied, agent j’s consumption on state s is
bounded below by ε in the limit. Since state s occurs infinitely often on almost
every path, we conclude that j survives a.s..

Whenever the economy has non-nested partitions as in Definition 12, the
same argument applies to every agent j ∈ I and the statement of the Proposition
obtains.
Proof of Proposition 14:
Consider a set of paths Ω̄ which has a strictly positive probability and on

which the fully aware agent j vanishes a.s.. We know from the previous result
that, on this set of paths, all partially aware agents survive a.s.. Hence, take
the minimal set Ω̄′ such that Ω̄′ ⊇ Ω̄ and Ω̄′ ∈ F i. The set Ω̄′ also has a strictly
positive probability and since i survives on Ω̄, he also survives on Ω̄′. It follows
that for any path ωi ∈ Ω̄′, the numerator of (8) remains finite and hence, the
denominator is also finite. Hence, by the argument in the proof of Proposition
7, the fully aware agent survives a.s. on every such ωi, a contradiction. We
conclude thus that agent j survives a.s..
Since j survives a.s., we know from the argument used in the proof of Propo-

sition 7 that any agent with a coarser awareness partition than j, correct beliefs
and an identical discount factor also survives a.s..
Proof of Proposition 19:
The proof is by construction: we will use the endowments e1...en to construct

the asset endowments ā1...ān, which will imply the same equilibrium consump-
tion. To do so, first construct an effectively complete asset structure A using
the method described in the paragraph after Definition 16. Set the initial en-

dowments to: āj
(
Aωjt

)
= ej

(
ωjt

)
for all j ∈ I, āj

(
Aωkt

)
= 0 if ωkt 6∈ Ωj . In

the following, we will use aj
(
ωkt
)
as a short hand for aj

(
Aωkt

)
.

For every agent j 6= i, set aj
(
ωjt

)
= cj

(
ωjt

)
for all ωjt ∈ Ωj and aj

(
ωkt
)

= 0

for all ωkt 6∈ Ωjt . Hence, for each agent j 6= i, his asset holdings are measur-
able relative to his awareness partition and generate exactly his equilibrium
consumption. For agent i and k ∈ I\ {i} and ωkt ∈ Ωk, let

ai
(
ωkt
)

=
∑

{j|ωkt∈Ωj , j 6=i}

[
ej
(
ωkt
)
− cj

(
ωkt
)]

+ ei
(
ωkt
)
.

For ωit ∈ Ωi\
(
∪k∈I\{i}Ωk

)
, set ai

(
ωit
)

= āi
(
ωit
)
. In the latter case, the asset

market for Aωit trivially clears, since only i is aware of asset Aωit .
For ωkt ∈ Ωk for some k 6= i, by construction,

ai
(
ωkt
)

= āi
(
ωkt
)

+
∑

{j|ωkt∈Ωj , j 6=i}

[
āj
(
ωkt
)
− aj

(
ωkt
)]

= āi
(
ωkt
)

+
∑

j∈I, j 6=i

[
āj
(
ωkt
)
− aj

(
ωkt
)]
,
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or ∑
j∈I

aj
(
ωkt
)

=
∑
j∈I

āj
(
ωkt
)

and asset markets clear for all assets Aωkt with ω
k
t ∈ Ωk for some k 6= i.

Since Ωi is finer than any of the Ωj for j 6= i, ai is measurable relative
to i’s awareness partition. Furthermore, for every ωit ∈ Ωi and every j 6= i,
there is a corresponding element of j’s awareness partition, ωjt

(
ωit
)
such that

ωjt
(
ωit
)
∈ Ωj and ωit ⊆ ωjt

(
ωit
)
. We then obtain that the payoff of i’s portfolio

ai on the event ωit is given by:∑
{ωkt |k∈I\{i}, ωkt∈Ωk, ωkt⊇ωit}

ai
(
ωkt
)

=
∑

j∈I, j 6=i

[
ej
(
ωjt
(
ωit
))
− cj

(
ωjt
(
ωit
))]

+ ei
(
ωit
)

=

=
∑

j∈I, j 6=i

[
ej
(
ωit
)
− cj

(
ωit
)]

+ ei
(
ωit
)

= ci
(
ωit
)

and is, therefore equal to i’s equilibrium consumption on ωit.
Our construction thus shows that we can replicate the equilibrium consump-

tion streams of all agents by choosing portfolios which are measurable relative to
the agents’awareness partitions, generate the equilibrium consumption streams
and clear the asset markets. Let (p (σt))σt∈Ω be the equilibrium price sequence.
For each asset Aωkt , let the price of this asset be given by

qA
ωkt

=
∑
σt∈ωkt

p (σt) .

Then the so defined equilibrium portfolios indeed maximize the agents’utilities
when the asset prices are given by (qA)A∈A, which completes the proof of the
proposition.
Proof of Proposition 20:
As in the proof of Proposition 19, let āk

(
ωkt
)

= ek
(
ωkt
)
for k ∈ {i; j} and

ωkt ∈ Ωk be the initial endowment of the agents with assets. Let Ωij be the finest
coarsening of the two partitions Ωi and Ωj and let generalized Arrow securities
for all events ωijt ∈ Ωij\

(
Ωi ∪ Ωj

)
be available in 0 supply.

Note that in this economy, the only trades that can occur in equilibrium have
to be measurable relative to Ωij . Hence, if ci

(
ωit
)
6= ei

(
ωit
)
for some ωit ∈ Ωi,

then we must have that

ci (σt)− ei (σt) = const for all σt ∈ ωijt ,

where ωijt is the minimal element in Ωij such that ωijt ⊇ ωit. Hence, consider
the following asset holdings:

if ωkt 6∈ Ωij , ak
(
ωkt
)

= āk
(
ωkt
)

= ek
(
ωkt
)

;

if ωkt ∈ Ωij , ωkt 6∈ Ωkt , a
k
(
ωkt
)

= ck
(
ω̃kt
)
− ek

(
ω̃kt
)
for some, and thus, for all ω̃kt ⊂ ωkt , ω̃kt ∈ Ωk;

if ωkt ∈ Ωij ∩ Ωkt , a
k
(
ωkt
)

= ck
(
ωkt
)
.
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Given these asset holdings, for every ωkt ∈ Ωk\Ωij such that ωkt ∈ ω̃kt for ω̃kt ∈
Ωij , the consumption of agent k on ωkt is given by:

ak
(
ω̃kt
)

+ ak
(
ωkt
)

= ek
(
ωkt
)

+ ck
(
ωkt
)
− ek

(
ωkt
)

= ck
(
ωkt
)
,

and hence, for each ωkt ∈ Ωk, k’s consumption exactly corresponds to k’s equi-
librium consumption at ωkt . Furthermore, the asset holdings clear the market,
since on ωkt 6∈ Ωij for i, j,

ai
(
ωkt
)

+ aj
(
ωkt
)

= āi
(
ωkt
)

+ āj
(
ωkt
)
,

on ωkt ∈ Ωij such that ωkt ∈ Ωkt for k ∈ {i; j},

ai
(
ωkt
)

+ aj
(
ωkt
)

= ci
(
ωkt
)

+ cj
(
ωkt
)

= ei
(
ωkt
)

+ ej
(
ωkt
)

= āi
(
ωkt
)

+ āj
(
ωkt
)
,

on ωkt ∈ Ωij such that ωkt 6∈ Ωkt for k ∈ {i; j},

ai
(
ωkt
)

+ aj
(
ωkt
)

= ci
(
ω̃it
)

+ cj
(
ω̃jt

)
− ei

(
ω̃it
)
− ej

(
ω̃jt

)
= ci (σt) + cj (σt)− ei (σt)− ej (σt) = 0 = āi

(
ωkt
)

+ āj
(
ωkt
)

for some, and thus for all ω̃it ⊂ ωkt , ω̃it ∈ Ωi and ω̃jt ⊂ ωkt , ω̃
j
t ∈ Ωj , σt ∈ ωkt , and

finally, for ωkt ∈ Ωij such that ωkt 6∈ Ωit, ω̃
i
t ⊂ ωkt , ω̃it ∈ Ωi, ωkt ∈ Ωjt ,

ai
(
ωkt
)

+ aj
(
ωkt
)

= ci
(
ω̃it
)
− ei

(
ω̃it
)

+ cj
(
ωjt

)
= ci (σt)− ei (σt) + cj (σt) = ej (σt)

= ej
(
ωkt
)

= āj
(
ωkt
)

= āi
(
ωkt
)

+ āj
(
ωkt
)

for all σt ∈ ωkt . As long as the asset prices satisfy the arbitrage condition

qA
ωkt

=
∑
σt∈ωkt

p (σt)

these portfolio holdings will also maximize the agents’ expected utility given
the budget constraint. Finally, the selected portfolios contain only assets whose
payoffs are measurable relative to the respective awareness partitions.
Proof of Proposition 23:
The existence of such an equilibrium follows easily from Bewley’s (1972)

theorem. If all agents are aware of σ∗t∗ , then all agents assign 0-probability to all
σt 6∈ Ωσ∗

t∗
and we can directly apply the result of Proposition 2. If not all agents

are aware of σ∗t∗ , then the set of contingencies in this economy includes all σt ∈
ω∗it for all ω∗it ∈ Ω∗iσ∗

t∗
for some i ∈ I. Obviously, given σ∗t∗ , many of the paths

have an objective probability of 0 and are assigned 0-probability by agents who
are aware of σ∗t∗ . In contrast, agents who are not aware of σ

∗
t∗ assign (mistakenly)

strictly positive probability to impossible events. Hence, in equilibrium, there
will be potentially trade over 0-probability contingencies: agents who are aware
of σ∗t∗ will want to sell consumption contingent on σt 6∈ Ωσ∗

t∗
, whereas agents

unaware of σ∗t∗ would like to buy it. Non-negativity constraints on consumption
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ensure that such trades remain finite. Given Assumption 3, all agents will wish
to assign strictly positive consumption to nodes σ∗t ∈ Ωσ∗

t∗
such that as long

as p (σ∗t ) ∈ (0;∞). However, if p (σt) ∈ (0;∞), only an agent j for whom
σt ∈ ω∗jt \Ωσ∗t∗ will wish to assign strictly positive consumption to such a node,
whereas all agents aware of σ∗t∗ will want to consume 0 at σt. We will now show
that this cannot constitute an equilibrium allocation and hence, p (σt) = 0 has
to hold, whenever σ∗t 6∈ Ωσ∗

t∗
.

Take σt 6∈ Ωσ∗
t∗
such that there is an l ∈ I and a ω∗lt ∈ Ω∗lσ∗

t∗
such that

σt ∈ ω∗lt . Let L denote the set of all such l. Suppose that c∗k (σt) = 0 for all
k 6∈ L. Then,

∑
l∈L c

∗l (σt) = e (σt). Let l′ ∈ L be the agent in L with the
finest partition. Then there is also a node σ∗t ∈ Ωσ∗

t∗
such that σt and σ∗t ∈ ω∗l

′

t

and hence, σ∗t ∈ ω∗lt for all l ∈ L. By Assumption 4, we can choose σ∗t so
that e (σ∗t ) ≤ e (σt). Measurability of consumption implies that

∑
l∈L c

∗l (σt) =∑
l∈L c

∗l (σ∗t ). However, we know that c
∗k (σt) = 0 < c∗k (σ∗t ) for all k aware of

σ∗t∗ whenever p (σt) > 0, hence, this cannot be an equilibrium allocation. We
conclude that p (σt) = 0 for all σt 6∈ Ωσ∗

t∗
. Hence, the f.o.c.s characterizing the

equilibrium upon retrading in such an economy will coincide with the respective
f.o.c.s in an economy with an initial node σ0 replaced by σ∗t∗ . Hence, we can use
the results from Sections 3 and 4 to characterize the equilibrium and survival.
Proof of Lemma 25:
The proof of the Lemma is obvious and therefore omitted.
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