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a b s t r a c t

We develop a general theory of epistemic democracy in large societies, which subsumes the classical
Condorcet Jury Theorem, the Wisdom of Crowds, and other similar results. We show that a suitably
chosen voting rule will converge to the correct answer in the large-population limit, even if there is
significant correlation amongst voters, as long as the average covariance between voters becomes small as
the population becomes large. Finally, we show that these hypotheses are consistent with models where
voters are correlated via a social network, or through the DeGroot model of deliberation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The epistemic approach to social choice theory originates with
Condorcet (1785). Suppose a group of people want to obtain
the correct answer to some dichotomous (yes/no) question. The
question has an objectively correct answer, and everyone has an
opinion, but nobody has perfect information. The group could be,
for example, a jury trying to determine the guilt or innocence of a
defendant in a criminal trial, or a committee of engineers trying to
determinewhether a bridge is structurally safe. Condorcet’s insight
was that such a group could efficiently aggregate their private
information by voting. He assumed that each voter’s success rate at
divining the truthwas better than blind chance, and that the errors
of different voters were stochastically independent. The famous
Condorcet Jury Theorem (CJT) then consists of two statements:

• A decision made by a committee using majority vote will be
more reliable than the opinion of any single individual. Fur-
thermore, larger committees are more reliable than smaller
committees.

• Majority vote will converge in probability to the correct
answer as the committee size becomes arbitrarily large.

The first statement is sometimes called the nonasymptotic part
of the CJT, while the second statement is the asymptotic part.
Although it was originally stated only for dichotomous decisions
made by majority vote, the CJT has been generalized to polychoto-
mous decisions made by the plurality rule (Lam and Suen, 1996;
Ben-Yashar and Paroush, 2001; List and Goodin, 2001), and even
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other voting rules such as the Kemeny rule and the Borda rule
(Young, 1986, 1988, 1995, 1997). Furthermore, in these contexts,
the ‘‘nonasymptotic’’ part of the CJT can be refined: under certain
conditions, the output of the voting rule is a maximum likelihood
estimator of the correct answer (see Pivato (2013b) for a general
formulation of these results).

A closely related result is the ‘‘Wisdom of Crowds’’ (WoC) prin-
ciple of Galton (1907): if a large number of people independently
estimate some numerical quantity, then the average of their esti-
mates will converge, in probability, to the true value. However, the
WoC, the CJT, and all of its polychotomous generalizations depend
on the assumption that the errors made by different voters are
independent randomvariables. This is obviously unrealistic: in real-
ity, the opinions of different voterswill be strongly correlated, both
because they rely on common sources of information and because
they influence one another through deliberation and discussion.
The goal of this paper is to extend the asymptotic part of the
CJT, WoC, and similar theorems to an environment with correlated
voters.

It has been understood for a long time that the ‘‘independence’’
assumption in the CJT is problematic. Starting in the 1980s, a series
of papers gauged the seriousness of this problem and proposed
possible solutions. Nitzan and Paroush (1984) demonstrated the
sensitivity of the CJT to the independence assumption, while Shap-
ley and Grofman (1984) showed that, with certain patterns of
correlations, a nonmonotonic rule could actually be more reliable
than majority vote. Owen (1986) argued that, if the voters can
be divided into subgroups such that voters within each subgroup
are correlated, then an ‘‘indirect’’ majority vote (like an electoral
college) could be more reliable than direct majority vote. Mean-
while, Ladha (1992) showed that the asymptotic CJT remained
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true as long as the ‘‘average’’ covariance between the voters was
sufficiently small. (This is a special case of Theorem 5.3 in the
present paper.) Berend and Sapir (2007) found general conditions
for the nonasymptotic part of the CJT to hold in a committee of cor-
related voters. Kaniovski (2009, 2010)modelled the joint probabil-
ity distribution of a population of homogeneous correlated voters
using a representation by Bahadur, and studied the nonasymptotic
part of the CJT in this context. Building on this work, Kaniovski
and Zaigraev (2011) showed that a special case of the Bahadur
representation admits a quota voting rule which neutralizes the
effect of the correlations. Finally, Peleg and Zamir (2012) gave
a number of necessary conditions and sufficient conditions for a
population of correlated voters to satisfy the CJT.

One natural source of voter correlation is ‘‘contagion’’ of opin-
ions (e.g. due to deliberation). Berg (1993a, b) and Ladha (1995)
supposed that the voters’ errors were correlated according to hy-
pergeometric or Pólya–Eggenberger urn processes, which are sim-
ple models of such ‘‘contagion’’. They showed that the asymptotic
CJT holds for the former, but does not hold for the latter (although
a group is still more reliable than an individual). See Berg (1996)
for a summary.

Another possible cause of voter correlation is a common source
of information. For example, in a criminal trial, all jurors observe
exactly the same evidence (although they may interpret it differ-
ently). In a committee of engineers, everyone reads the same tech-
nical reports and has access to the same data. In other situations,
the voters might all be influenced by an ‘‘opinion leader’’. Boland
(1989) and Boland et al. (1989) developed a version of the CJT with
such an opinion leader. Later, Berg (1994) extended this to a setting
withweighted voting rules. Estlund (1994) also considered amodel
with opinion leaders, but he showed that, under certain condi-
tions, such opinion leaders could actually improve the reliability
of majority vote. Meanwhile, Ladha (1993, Proposition 1) proved a
version of the CJT when the voter errors are not independent, but
are exchangeable random variables. By a theorem of de Finetti, this
is equivalent to amodel where the voter opinions are independent
Bernoulli random variables with a common parameter α, which is
itself another random variable; thus, α can be interpreted as rep-
resenting a common information source. (The Pólya–Eggenberger
distributions studied by Berg (1993a, b) and Ladha (1995) are also
examples of exchangeable distributions.) Peleg and Zamir (2012,
Theorem 5) also proved a version of the CJT for exchangeable
random variables. Dietrich and List (2004) demonstrated that if
all voters draw only on a small set of (unreliable) information
sources, then the asymptotic part of the CJT fails: even a very large
population of voters cannot be any more reliable than the (small)
set of information sources on which they all base their opinions.
Dietrich and List represented this situation as a Bayesian network;
this approach was further developed by Dietrich and Spiekermann
(2013a, b), who showed that, in the presence of common causes,
the asymptotic reliability of a large committee can be good, but
less than perfect.

A third possible cause of correlation is strategic voting. Even
if all voters want the group to get the correct answer, they may
have incentives to vote strategically (Austen-Smith and Banks,
1996). To see this, recall that each voter’s optimal voting strategy
is based on the hypothesis that she is a pivotal voter. But this
hypothesis has implications for howother peoplemust have voted,
and thus, indirectly, about the state of the world itself. So a voter
who believes that she is pivotal has extra information beyond her
private signal, and this may change the way she votes; in some
cases, she may actually vote against her private information. But
in a strategic setting, all voters will vote ‘‘as if’’ they are pivotal, so
such strategic dishonesty may be widespread (and correlated) in
equilibrium.

However, the consequences of strategic voting are not as dire
as one might imagine in an epistemic context. McLennan (1998,

Theorem 1) has shown that any profile of voting strategies which
maximizes the probability that the group gets the right answerwill
be a Bayesian Nash equilibrium (BNE). This holds even if the voters’
types (i.e. their private information) are correlated. As observed by
Peleg and Zamir (2012), this means that we only need to prove the
existence of some pattern of voting behaviour which satisfies the
CJT; it then follows that the CJT will also hold in BNE. Thus, we do
not need to explicitly consider strategic behaviour in our analysis.

Aside from voter correlation, another important issue in epis-
temic social choice theory is the tradeoff between group size and
average voter competency. Supposewe could arrange the voters in
order from most epistemically competent to least competent. We
could then consider various forms of ‘‘epistocracy’’, where we del-
egate the decision to the N most competent individuals, for some
value of N . One extreme (N = 1) is rule by a ‘‘philosopher king’’—
the singlemost competent individual. The opposite extreme (max-
imal N) is ‘‘mass democracy’’, where all voters participate equally.
If all voters are equally competent, then Condorcet’s theorem says
that increasing N will always leads to better decisions. But we
can easily imagine situations where competency is distributed
so unequally amongst the voters that increasing N will lead to
worse decisions. The problem is exacerbated if the competency
of each individual voter is itself a decreasing function of the size
of the electorate in which she participates. This is plausible if,
for example, there is a fixed budget of resources to spend on
educating and informing the voters (so that increasing N necessar-
ily decreases the educational resources available for each voter),
or if voters in a larger electorate are tempted to epistemically
‘‘free ride’’ on their colleagues. A series of papers have considered
this size/competency tradeoff (Boland, 1989; Kanazawa, 1998;
Karotkin and Paroush, 2003; Berend and Sapir, 2007). Our results
show that the asymptotic results of the CJT and WoC remain true
even if average voter competency decreases as the population size
increases — as long as it does not decay too quickly.

Almost all of the aforementioned papers deal only with di-
chotomous decision problems and majority rule.1 In contrast, the
asymptotic results of this paper are applicable to polychotomous
decisions and a large class of epistemic voting rules, including
majority rule, plurality rule, the Kemeny rule, the median rule
(on a discrete metric space), the average rule (for vector-valued
decisions), Condorcet-consistent rules, and scoring rules such as
the Borda rule. To obtain this level of generality, we will intro-
duce a single broad class of voting rules which includes all of the
aforementioned rules as special cases: the class of mean partition
rules. This class of rules yields a very general approach to epistemic
social choice theory, which subsumes all existing versions of the
asymptotic CJT (dichotomous and polychotomous) and the WoC
principle, and also applies to many other epistemic social choice
models. We will show that these asymptotic results can remain
valid even when there is considerable correlation between voters,
and even if the average competency of voters decreases as the
population increases. Furthermore, we will provide a concrete
illustration of the economic relevance of our general results, by
connecting them with the theory of social networks and with the
(DeGroot, 1974) model of consensus formation.

The remainder of this paper is organized as follows. Section 2
introduces notation and terminology which will be maintained
throughout the paper. Section 3 defines the class of mean partition
rules and gives several examples, includingmajority rule, plurality
rule, the median rule, and other scoring rules. Section 4 describes
a special case of our model, which we call a populace: this is
a family of probability distributions, describing a society where
voters make independent random errors. It contains two special

1 Exceptions are Young (1986, 1988, 1995, 1997), Lam and Suen (1996), McLen-
nan (1998), Ben-Yashar and Paroush (2001) and List and Goodin (2001).
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Fig. 1. A mean partition rule. (a) V is a subset of the vector space V. (b) C is the convex hull of V . (c) f −1
{s} is a convex subset of C, for each s ∈ S. (d) The sets C′ and Cδ .

cases of our main result, which state that, if the populace satisfies
certain mild conditions, then an appropriate mean partition rule
will select the correct answer with very high probability in a large
population (Propositions 4.1 and 4.3).

Section 5 describes the general model, which we call a culture:
this is a family of probability distributions, describing a society
where the errors of the voters are correlated random variables. It
then states the general version of our main result (Theorem 5.3): if
the culture is sagacious (meaning that it satisfies certain mild con-
ditions — in particular, the ‘‘average covariance’’ between voters is
not too large), then an appropriate mean partition rule will select
the correct answerwith very high probability in a large population.

The rest of the paper explores applications. Section 6 considers
cultures based on social networks, and contains results (Proposi-
tions 6.2 and 6.5) stating that, as long as the social network is not
too richly connected, the resulting culture will be sagacious, so
that Theorem 5.3 applies. Finally, Section 7 considers the effects
of deliberation on an already sagacious culture, and contains a
result (Proposition 7.1) saying that, as long as no individuals are too
‘‘influential’’ in this deliberation, the culture will remain sagacious
after deliberation. All proofs are in the Appendix.

2. Notation and terminology

We now fix some notation which will be maintained through-
out the paper. Let N := {1, 2, . . .} denote the set of natural num-
bers. LetR denote the set of real numbers, and letR+ denote the set
of nonnegative real numbers. Let I denote a finite set of voters, and
let I := |I|. (We will typically assume that I is very large; indeed,
we will mainly be interested in asymptotic properties as I → ∞.)

Ametric space is a set S together with a function d : S ×S −→

R+ such that, for any r, s, t ∈ S: (1) d(s, t) = d(t, s); (2) d(s, t) = 0
if and only if s = t; and (3) d(r, t) ≤ d(r, s)+d(s, t).Wewill assume
throughout the paper that the set of possible states of the world is
a metric space (for example, a subset of some Euclidean space). If
S is a finite set, then we will just use the discrete metric, where
d(s, t) = 1 for any s ̸= t .

IfV is a vector space, then a norm onV is a function ∥_∥ : V −→

R+ such that, for any v,w ∈ V and r ∈ R: (1) ∥r v∥ = |r| · ∥v∥; (2)
∥v∥ = 0 if and only if v = 0; and (3) ∥v + w∥ ≤ ∥v∥ + ∥w∥. Such
a norm defines a metric d on V by d(v,w) := ∥v − w∥. An inner
product on V is a function ⟨_, _⟩ : V × V −→ R such that, for any

v,w ∈ V: (1) The functions ⟨v, _⟩ : V −→ R and ⟨_,w⟩ : V −→ R
are linear; (2) ⟨v,w⟩ = ⟨w, v⟩; and (3) ⟨v, v⟩ ≥ 0, and furthermore,
⟨v, v⟩ = 0 if and only if v = 0. For example, if V = R, then we
could simply take ⟨r, s⟩ := r s for any r, s ∈ R. If V = RN , then we
could use the standard dot product: ⟨v,w⟩ = v1 w1 + · · · + vN wN
for any v,w ∈ RN . An inner product defines a norm by setting
∥v∥ :=

√
⟨v, v⟩. For example, the Euclidean norm on RN is defined

by ∥v∥ :=

√
v2
1 + · · · + v2

N . An inner product space is a vector space
equipped with an inner product. We always endow such a space
with themetric induced by the norm induced by the inner product.
Wewill assume throughout the paper that the set of votes that can
be sent by the voters is a subset of some inner product space.

Letρ be a probabilitymeasure on a vector spaceV. The expected
value of a ρ-random variable is defined E[ρ] :=

∫
V v dρ[v]. If V

has a norm ∥.∥, then the variance is defined var[ρ] :=
∫
V ∥v −

v∥2 dρ[v], where v := E[ρ].

3. Mean partition rules

This section introducesmean partition rules: voting rules where
the outcome is functionally determined by the average of the sig-
nals sent by the voters. After formally defining this class of rules,we
provide a series of examples, showing that many common voting
rules fall into this class.

Let I be a set of individuals. Let S be a metric space, whose
elements represent social alternatives. An (anonymous)mean par-
tition rule on S is a voting rule defined by a data structure F :=

(V,V, f ) with four properties:

(M1) V is an inner product space, and V ⊆ V (as shown in
Fig. 1(a)).

(M2) Let C be the closed convex hull of V (as in Fig. 1(b)).2 Then
f : C −→ S is a surjective function (as shown in Fig. 1(c)).

(M3) There exists a subset C′
⊆ C and δ > 0 such that, if

we define Cδ
:= {c ∈ C; d(c, C′) < δ}, then f is uniformly

continuous and surjective when restricted to Cδ .

2 That is: C is the smallest closed, convex subset of V that contains V . Equiva-
lently, C is the intersection of all closed convex sets containing V . If V is finite, then
its convex hull is automatically closed, so in this case we could just define C to be
its convex hull.
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Fig. 2. (Example 3.1(a)) Simple majority vote as a mean partition rule.

Fig. 3. (Example 3.1(b)) The plurality rule as a mean partition rule.

(M4) For any s ∈ S , the set f −1
{s} ∩ C′ is convex (as in

Fig. 1(d)).

In this model, V is the set of possible votes which could be sent
by each individual. Given any finite set I of individuals, and any
profile V = (vi)i∈I of votes (where vi ∈ V for all i ∈ I), the output
of the rule F is obtained by applying f to the average of the vectors
{vi}i∈I . Formally,

F (V) := f

(
1
|I|

∑
i∈I

vi

)
, for all V = (vi)i∈I ∈ VI . (1)

A few remarks are in order. First, if V is a finite-dimensional vector
space, then it always has an inner product, and furthermore all
inner products on V are uniformly equivalent; thus, the require-
ment that V be an inner product space in (M1) involves absolutely
no loss of generality. Second, from Property (M2) and Eq. (1), it is
clear that the voting rule F is anonymous by construction (i.e. the
outcome is invariant under permutation of the voters). Third, (M3)
does not require f to be continuous everywhere on C. (Indeed, if
S were a discrete set, this would be impossible.) However, if f
is injective (so that f −1

{s} is a singleton for all s ∈ S), then the
surjectivity part of (M3) implies that Cδ

= C, so that f is a uniformly
continuous function on C. (In this case, the convexity condition
(M4) is automatically satisfied.) At the other extreme, if S is finite,
then (M2) says that f defines an S-labelled partition of C — in other
words, C =

⋃
s∈SCs, where Cs := f −1

{s} for all s ∈ S. Meanwhile,
(M4) says that C′

=
⋃

s∈SC
′
s, where C′

s is a convex subset of Cs,
for each s ∈ S. Fig. 1(c) suggests that Cs is also convex for each
s ∈ S , and indeed, this is the case in many of our examples. But it
is not true in general. Since f is single-valued, it must use some
‘‘tie-breaker’’ rules for points along the boundaries between the
preimage sets Cs (for s ∈ S), and the sets Cs would be convex only
if these tie-breaker rules were carefully chosen. Fortunately, this
does not matter; the sets Cs need not be convex, as long as (M4) is
satisfied. (See Example 3.3(a) for an illustration.) Indeed, it is for
precisely this reason that (M3) introduced C′.3

3 I thank the referee for calling my attention to this issue.

Example 3.1. (a) (Simple majority rule) Let S := {±1}. Let Vmaj :=

R. Let Vmaj := {±1}, so that C = [−1, 1], as shown in Fig. 2(a).
Define fmaj : C −→ S by setting fmaj(r) := sign(r) for all nonzero
r ∈ [−1, 1], while fmaj(0) := 1 (an arbitrary tie-breaking rule).
Then Fmaj = (Vmaj,Vmaj, fmaj) is the simple majority rule. Now,
fix ϵ > 0, and let C′

:= C′

−1 ⊔ C′

+1, where C′

−1 := [−1, −ϵ)
and C′

+1 := (ϵ, 1], as shown in Fig. 2(b). Then (M3) and (M4) are
satisfied (set δ := ϵ/2).

Throughout the remaining examples, let ℘(S) be the power set
of S , and let τ : ℘(S) −→ S be a function such that τ (Q) ∈ Q for
all nonempty Q ⊆ S. (Thus, in particular, τ {s} = s for all s ∈ S.)
We will use τ as a ‘‘tie-breaker’’ in the definition of the following
rules.

(b) (Plurality rule) Let N ≥ 2, and let S := {1, 2, . . .N} (a set
of N alternatives). Let Vplu := RN . For all n ∈ [1 . . .N], let vn :=

(0, . . . , 0, 1, 0, . . . , 0), where the 1 appears in the nth coordinate.
Let Vplu := {v1, . . . , vN} (a subset of RN ). If C is the convex hull
of V , then C is the unit simplex in RN , as shown in Fig. 3(a). For
any c ∈ C, let Sc := {s ∈ S; cs ≥ ct for all t ∈ S} be the
set of maximal coordinates. Define fplu : C −→ S by setting
fplu(c) := τ (Sc), for all c ∈ C. Then Fplu = (Vplu,Vplu, fplu) is the
plurality rule. Fix ϵ ∈ (0, 1), and for all s ∈ S , define the convex set
C′
s := {c ∈ C; cs > ct + ϵ for all t ̸= s}, as shown in Fig. 3(b). (Note

that C′
s ̸= ∅ because ϵ < 1.) Let C′

:= C′

1 ⊔ C′

2 ⊔ · · · ⊔ C′

N ; then (M3)
and (M4) are satisfied (set δ := ϵ/2).

(c) (Themedian rule) LetS be a finite subset ofR. LetVmed := RS .
For all s ∈ S , define vs := (vs

t )t∈S ∈ V, by setting vs
t := |s− t| for all

t ∈ S. LetVmed := {vs}s∈S (a subset ofVmed), and let C be the convex
hull of V . For any c ∈ C, let Sc := {s ∈ S; cs ≤ ct for all t ∈ S}

be the set of minimal coordinates of c — in effect, these are the
element(s) of S which minimize the average distance to the points
chosen by the voters. It is easy to see that Sc is always an interval
inside S. Define fmed : C −→ S by setting fmed(c) := τ (Sc), for all
c ∈ C. In otherwords, each voter chooses a point s inS (represented
by vs), and Fmed chooses a point in S which minimizes the average
distance to the points chosen by the voters (using τ to break ties).
As is well-known, this point will be a median of the points chosen
by the voters. (This is a special case of the next example.)

(d) (The generalized median rule) Let (S, d) be a finite metric
space (for example, a connected graph with the geodesic metric).
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Fig. 4. (Example 3.2) A (convex) mean partition rule that is not a scoring rule.

Let Vmed := RS . For all s ∈ S , define vs := (vs
t )t∈S ∈ V, by

setting vs
t := d(s, t) for all t ∈ S. Let Vmed := {vs}s∈S (a subset

of Vmed), and let C be the convex hull of Vmed. For any c ∈ C, let
Sc := {s ∈ S; cs ≤ ct for all t ∈ S}, as in example (d). Define
fmed : C −→ S by setting fmed(c) := τ (Sc), for all c ∈ C. As in
example (d), each voter chooses a point s in S (represented by vs),
and Fmed selects a point in S which minimizes the average distance
to the points chosen by the voters (using τ to break ties). To see
that this is a mean partition rule, let ϵ > 0, and for all s ∈ S , let
C′
s := {c ∈ C; cs < ct − ϵ for all t ∈ S \ {s}}. If ϵ is small enough,

then these sets are nonempty for all s ∈ S , convex, and disjoint,
and if we define C′

:=
⨆

s∈SC
′
s and δ := ϵ/2, then fmed is uniformly

continuous on C′; thus, (M3) and (M4) are satisfied.
(e) (The Kemeny rule) Let A be a finite set of social alternatives.

Let S be the set of all linear orders over A. The Kendall metric
on S is defined by declaring d(s, r) to be the number of pairwise
comparisons where the orders s and r disagree. In this case, the
generalized median rule from example (d) is the Kemeny rule for
preference aggregation.

(f) (Scoring rules) Let S be a finite set of alternatives, and let
Vscr := RS . Let V be any subset of V. Intuitively, an element
v = (vs)s∈S in V represents a vote which assigns a ‘‘score’’ of vs to
each alternative in S. Let C be the convex hull of V . For any c ∈ C,
let Sc := {s ∈ S; cs ≥ ct for all t ∈ S} be the set of maximizers
of c. Define fscr : C −→ S by setting fscr(c) := τ (Sc), for all c ∈ C.
Then Fscr = (Vscr,V, fscr) is called a scoring rule . All of the examples
above are special cases of scoring rules. Other well-known scoring
rules include the Borda rule and the Approval Voting rule. (The proof
that this is a mean partition rule is similar to example (d).)

(g) (Mean proximity rules) Let S be a finite set of alternatives,
and for each s ∈ S , let rs ∈ RN . Let V be another finite subset
of RN . Let C be the convex hull of V . For any c ∈ C, let Sc :=

{s ∈ S; ∥rs − c∥ is minimal}. Define fmpr : C −→ S by setting
fmpr(c) := τ (Sc), for all c ∈ C. Then Fmpr = (Vscr,V, fmpr) is called a
mean proximity rule . ⋄

The median rule in Example 3.1(c) might seem more like a
statistical construct than a bona fide voting rule. But if all voters
have single-peaked preferences on a linearly ordered set S , then
the median alternative is the Condorcet winner, so it will be the
outcome of any Condorcet-consistent voting rule (Black, 1958).
Medians also arise in another important voting rule. Let A be a set
of alternatives, let S be a linearly ordered set of ‘‘rankings’’, and
suppose each voter assigns an ranking in S to each alternative in
A. The majority judgement rule selects the alternative in A which
receives the highest median ranking from the voters. This rule
has many nice properties (Balinski and Laraki, 2011). Meanwhile,
the generalized median voting rule of Example 3.1(d) has been
studied and axiomatically characterized for finite metric spaces

(Barthélémy and Janowitz, 1991), graphs and lattices (McMorris et
al., 2000), and judgement aggregation (Nehring and Pivato, 2017).

The scoring rules of Example 3.1(f) are related to the generalized
scoring rules of Xia and Conitzer (2008). The difference is that Xia
andConitzer identify the elements ofV withpreference orders over
S; on the other hand, they do not necessarily use the maximizer
as the winner. Xia (2015) introduced a further generalization he
called generalized decision scoring rules, and proved a CJT-type
result similar to Proposition 4.1. When V and S are both finite,
Zwicker (2008, Theorem 4.2.1) has shown that an anonymous
voting rule is a scoring rule (as in Example 3.1(f)) if and only if it is a
mean proximity rule (as in Example 3.1(g)).4 So these two classes
are equivalent. But not every mean partition rule is a scoring rule,
even when V and S are finite, as shown by the next example.

Example 3.2 (Not a Scoring Rule). Let S = {1, 2, 3}, let V = R3,
and let V = {v1, v2, v3}, as in the Plurality rule of Example 3.1(b).
Thus, C is the unit simplex inR3. Define f : C −→ S as follows (see
Fig. 4(a)):

for all c = (c1, c2, c3) ∈ C,

f (c) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
3 if c3 >

1
2
;

1 if c3 ≤
1
2
and c1 ≥ c2;

2 if c3 ≤
1
2
and c1 < c2.

Thus, alternative 3 wins if it is supported by a strict majority of the
voters; otherwise either 1 or 2wins, depending onwhich of them is
supported bymore voters (with ties broken in favour of alternative
1). For example, f (0.3, 0.25, 0.45) = 1. Fig. 4(b) illustrates how this
is a mean partition rule. But it is not a scoring rule (Pivato, 2013a
Example 2).5

Such a rule would make sense in a scenario where alternative
3 was seen as prima facie less desirable than alternatives 1 or 3, so
that it needs a higher level of popular support to be adopted. In an
epistemic context, alternative 3might be regarded as less plausible
than alternatives 1 or 2, and thus demanding a higher standard of
evidence. ⋄

In all the mean partition rules in Examples 3.1 and 3.2, the
function f defines a convex, S-labelled partition of the convex hull

4 Zwicker’s model is slightly different: instead of using a tiebreaker rule, he
allows voting rules to be multivalued in the case of a tie.
5 Cervone and Zwicker (2009) contains a similar example, but their focus is on

convex partitions rather than scoring rules.
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Fig. 5. (Example 3.3(a)) Any majoritarian rule is a mean partition rule.

C; the continuity set C′ in condition (M3) is then obtained by ‘‘ϵ-
shrinking’’ the convex cells of this partition. In the terminology of
Pivato (2013a), rules like this are called balance rules.6 However,
mean partition rules do not necessarily involve convex partitions,
as the next examples show.

Example 3.3. (a) (Majoritarian rules) Let S = {1, 2, . . . ,N}, let
V := RN , and define V := {v1, . . . , vN} as in Example 3.1(b). Let C
be the convex hull of V , and for all s ∈ S , let Cs := {c ∈ C; cs > 1

2 },
as shown in Fig. 5(a) Let f : C −→ S be any function such that
Cs ⊆ f −1

{s} for all s ∈ S. Thus, if we define the rule F as in formula
(1), then F (V) = s whenever more than half of all the voters
support s; in other words, F is a majoritarian rule. If no alternative
receives a clear majority, then the decision is determined by the
structure of f in the part of C not covered by C1 ⊔ · · · ⊔ CN ; in
particular, note that the set f −1

{s}neednot be convex for any s ∈ S.
Fig. 5(b) shows one possible example. To see that any majoritarian
rule is a mean partition rule, let ϵ > 0, and let C′

:= C′

1 ⊔ · · · ⊔ C′

N ,
where for all s ∈ S , we define C′

s := {c ∈ C; cs > 1
2 + ϵ}, as shown

in Fig. 5(c).
(b) (Condorcet consistent rules) Let S be a finite set of alterna-

tives, let N be a set containing exactly one of the pairs (s, t) or
(t, s), for each s, t ∈ S , and let V := RN . For any v ∈ V, we define
vs≻t := vs,t if (s, t) ∈ N , whereas vs≻t := 1 − vt,s if (t, s) ∈ N .
For any strict preference order ≻ on S , let v≻

∈ V be the unique
vector such that v≻

s≻t = 1 for all s, t ∈ S. (In other words, for all
(s, t) ∈ N , we have v≻

s,t := 1 if s ≻ t , whereas v≻
s,t := 0 if t ≻ s.) Let

V := {v≻
; ≻ is a strict preference order on S}. This is the basis for

a voting rule where each voter expresses a strict preference order
over S , and we keep track of the total support for each pairwise
comparison. Let C be the convex hull of V; see Fig. 6(i) for the case
S = {a, b, c}. For each s ∈ S , let Cs := {c ∈ C; cs≻t > 1

2 for all
t ̸= s}, as shown in Fig. 6(ii–iv). Let f : C −→ S be a function such
that Cs ⊆ f −1

{s} for all s ∈ S. Thus, if we define F as in formula (1),
then F (V) = s whenever s is the Condorcet winner , meaning that
more than half of all the voters prefer s to each other alternative in
S. In other words, F is a Condorcet-consistent rule. If no alternative
is a Condorcet winner, then the decision is determined by the
structure of f in the part of C not covered by

⨆
s∈SCs. Many popular

voting rules are Condorcet consistent, including Copeland rule, the
Simpson-Kramer (‘‘minimax’’) rule, the Tideman (‘‘ranked pairs’’)
rule, and the Schulze rule. For most of these rules, the set f −1

{s} is
not convex for any s ∈ S. To see that any Condorcet-consistent rule
is a mean partition rule, let ϵ > 0, and let C′

:=
⨆

s∈SC
′
s, where for

all s ∈ S , we define C′
s := {c ∈ C; cs≻t > 1

2 + ϵ for all t ̸= s}. ⋄

6 See Pivato (2013a) for the precise definition of balance rules and their axiomatic
characterization.

As Example 3.3 shows, the set C′ which appears in (M3) and
(M4) could actually be a rather small subset of C. However, the
smaller C′ becomes, the more difficult it will be to satisfy the
Identification condition we will introduce in Sections 4 and 5. In
contrast, if a mean partition rule is based on a convex partition,
then C′ can be a very large subset of C. Thus, whilewe do not require
mean partition rules to use convex partitions, the Identification
condition of Sections 4 and 5 is more easily satisfied for such rules.

All of the previous examples have assumed that S is finite. But
there are also mean partition rules where S is infinite, or even a
continuum, as shown by the next example.

Example 3.4 (The Average Rule). Let V be an inner product space
(e.g. V = RN ), and let S be a convex subset of V. Let C = V = S ,
and let fave : C −→ S be the identity function. This represents
the rule where each voter declares an ‘‘ideal point’’ in S , and the
outcome is the arithmetic average of these ideal points. Note that
(M2) and (M3) are satisfied (with C′

:= S and δ arbitrary), because
the identity function is uniformly continuous, and the preimage of
each point is a singleton. ⋄

4. Epistemic social choice with independent voters

The main focus of this paper is correlated voters. But for ease
of reading, we will first introduce the main ideas in an environ-
ment with independent voters. Each voter is represented using a
behaviour model: a function that maps each possible state of the
world to a probability distribution over votes. A wide variety of
behaviour models are mathematically possible, but most of these
will not occur in an actual electorate of human voters, whose
behaviour presumably conforms to certain psychological regular-
ities and/or cultural norms. We will not explicitly model these
psychological and cultural factors; instead, wewill represent them
implicitly by singling out a subset of possible behaviour models
we call a populace. We will suppose that any actual electorate is
constructed by sampling from this populace. The results of this
section (Propositions 4.1 and 4.3) show that, if the populace sat-
isfies certain conditions, then the mean partition rule applied to a
large electorate of independent voters is highly likely to get the
correct answer. By applying these results to some of the mean
partition rules introduced in Examples 3.1 and 3.3, we rederive
the most general versions of the Condorcet Jury Theorem which
have appeared in previous literature (Example 4.2). We are also
obtain a very general version of the Wisdom of Crowds principle
(Example 4.4) and a CJT-type result for log-likelihood scoring rules,
a class of voting rules which play a prominent role in ‘‘maximum-
likelihood estimator’’ approaches to epistemic social choice theory
(Example 4.5).
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Fig. 6. (Example 3.3(b)) Any Condorcet-consistent rule is a mean partition rule.

Let S be the metric space of the possible states of the world
(the true state being unknown). Let (V,V, F ) be a mean partition
rule taking outcomes in S. Let I be a finite set of individuals, and
let I := |I|. We suppose that each individual’s vote is a random
variable, which is dependent on the true state of nature. The idea
is that each individual obtains some information about the state
of nature (possibly incomplete and/or incorrect), combines it with
her ownpre-existing beliefs, and formulates a belief about the state
of nature, which she expresses using her vote. Our goal is to use the
pattern of these votes to estimate the true state of nature.

Formally, for each individual i ∈ I, we posit a behaviour model
ρ i

: S −→ ∆(V); if the true state is s ∈ S , then the probability
distribution of individual i’s vote will be ρ i(s). For any v ∈ V , we
will write ρ i(v|s) for the value of ρ i(s) evaluated at v — i.e. the
probability that individual i votes for v, given that the true state is
s. Let E[ρ(s)] denotes the expected value of a ρ(s)-random variable
— in other words, themean value of the distribution ρ(s). If C is the
closed convex hull of V , then E[ρ(s)] ∈ C.7

Different voters may have different behaviour models (due to
differing competency, different prior beliefs, or access to different
information sources). Furthermore, it is not realistic to suppose
that we have precise knowledge of the behaviour model of every
voter (or even of any voter); in general, we only know some broad
qualitative properties of their behaviour models. Thus, we will
suppose that there is some set P of possible behaviour models
(i.e. functions from S into ∆(V)), and all we know is that ρ i

∈ P
for all i ∈ I. Wewill refer toP as a populace on V . Let F = (V,V, f )
be a mean partition rule, and let C be the closed convex hull of V .

7 Formally, E[ρ(s)] :=
∫
V v dρ(s)[v]. This V-valued integral is defined by taking

a limit in V; this is why we defined C to be the closed convex hull of V in (M2), and
not merely its convex hull. If V is finite-dimensional, then this integral is defined in
the obvious way. But if V is infinite-dimensional, then it is a Bochner integral; for
details, see Remark A.3 in the Appendix.

Wewill say that a populaceP is sagacious for F if there is some set
C′

⊆ C satisfying conditions (M3) and (M4) such that P satisfies
two conditions:

Identification. For any ρ ∈ P and any s ∈ S , the expected value
of a ρ(s)-random variable lies in the f -preimage of s inside C′.
That is: E[ρ(s)] ∈ C′ and f (E[ρ(s)]) = s.

Minimal Determinacy. There is some M ≥ 0 such that
var[ρ(s)] ≤ M for all ρ ∈ P and s ∈ S.

The Identification condition says that, while an individual’s ac-
tual vote may be incorrect, the expected value of her vote indicates
the true state of nature — at least once it has been ‘‘interpreted’’
using the function f . The variance of an individual’s vote distri-
bution is a measure of ‘‘randomness’’: if the variance is large,
then this person’s vote is quite unpredictable, and likely to be far
from its expected value.Minimal Determinacy places a limit on the
randomness of each voter.

Note that the epistemic reliability of a voter is determined both
by themean and the variance of her behaviourmodel— ifρ i(s) has a
small variance, but its expected value is very close to the boundary
of f −1

{s}, while ρ j(s) has a larger variance, but its expected value
is much farther from the boundary of f −1

{s}, then it may turn out
that voter j’s opinion is a more reliable indicator of the true state
of nature than voter i, even though voter j’s opinion is also more
random. It is for this reason that we use the term ‘‘determinacy’’
rather than ‘‘reliability’’ to describe the bound on variance.8 Also
note that, if the set V is bounded (in particular, if V is finite), then
Minimal Determinacy is automatically satisfied (because there will
be someM such that var(ρ) ≤ M for any ρ ∈ ∆(V)).

Our first result concerns the case when S is finite. It says that
if a large number of voters are drawn from a sagacious populace,

8 I thank the referee for emphasizing the importance of this distinction.
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and their votes are independent random variables, then the output
of the voting rule will be the true state of nature, with very high
probability.

Proposition 4.1. Let F be a mean partition rule ranging over a finite
set S , and let P be a populace which is sagacious for F . For all i ∈ N,
let ρi ∈ P . Fix s ∈ S , and suppose {vi}∞i=1 are all independent random
variables, where, for all i ∈ N, vi is drawn from distribution ρi(s). Then
limI→∞Prob [F (v1, v2, . . . , vI) = s] = 1.

Example 4.2. (a) (Condorcet Jury Theorem) Let S = V := {±1} and
let Fmaj be as in Example 3.1(a). Let P be the set of all behaviour
models ρ : {±1} −→ ∆{±1} such that ρ(s|s) > 1

2 + ϵ (and thus,
ρ(−s|s) < 1

2 − ϵ) for both s ∈ {±1}. Let C′

−1 := [−1, −ϵ) and
C′

1 := (ϵ, 1]. Then E[ρ(s)] ∈ C′
s for any ρ ∈ P and s ∈ {±1}.

Thus, Fmaj (E[ρ(s)]) = s, so Identification is satisfied. Furthermore,
var(ρ) < 4 for any ρ ∈ ∆{±1}, so Minimal Determinacy is always
satisfied. Thus, Proposition 4.1 yields an extension of the Condorcet
Jury Theorem toheterogeneous voters, originally stated by Paroush
(1998): If the voter’s opinions about some dichotomous choice
are independent random variables, and each voter satisfies some
minimal level of competency (i.e. her probability of identifying the
correct answer is ϵ-better than a coin flip), then the outcome of
a simple majority vote will converge in probability to the correct
answer as the voting population becomes large.

(b) (Plurality CJT ) Let N ≥ 2, and let S := {1, 2, . . .N}. Define
(V,V, Fplu) as in Example 3.1(b). Let P be the set of all behaviour
models ρ : S −→ ∆(V) such that ρ(vs|s) > ρ(vt |s) + ϵ, for all
s, t ∈ S with s ̸= t . For all s ∈ S , define Cs as in Example 3.1(b).
Then E[ρ(s)] =

(
ρ i(1|s), ρ i(2|s), . . . , ρ i(N|s)

)
∈ Cs for all ρ ∈ P

and s ∈ S; thus, Identification is satisfied. Furthermore, var(ρ) < N
for any ρ ∈ ∆(V), so Minimal Determinacy is always satisfied.
Thus, Proposition 4.1 yields a ‘‘polychotomous’’ extension of the
CJT, originally stated by Goodin and List (2001; Proposition 2):
if each voter has some minimal level of competency (i.e. is ϵ-
better than a random guess), then the outcome of the plurality rule
will converge in probability to the correct answer as the voting
population becomes large.

By applying a similar argument to Example 3.3(a,b), we could
also develop polychotomous versions of the CJT for majoritarian
and Condorcet-consistent voting rules. ⋄

In fact, Proposition 4.1 is a special case of the next result, which
also applies when S is infinite. This result says that, if a large
number of voters are drawn from a sagacious populace, and their
votes are independent random variables, then the output of the
voting rule will be very close to the true state of nature, with very
high probability.

Proposition 4.3. Let F be a mean partition rule ranging over an
arbitrary set S , and let P be a populace which is sagacious for F .
For all i ∈ N, let ρi ∈ P . Fix s ∈ S , and suppose {vi}∞i=1 are all
independent random variables, where, for all i ∈ N, vi is drawn from
distribution ρi(s). Then for any open subset U ⊂ S containing s, we
have limI→∞Prob [F (v1, v2, . . ., vI) ∈ U] = 1.

Example 4.4 (The Wisdom of Crowds). Let V be an inner product
space (e.g. V = RN ), let V = S be a convex subset of V, and let
Fave be the average rule, as in Example 3.4. Fix M > 0, and let
P be the set of all behaviour models ρ : S −→ ∆(V) such that,
for all s ∈ S , E[ρ(s)] = s and var[ρ(s)] ≤ M . Then Identification
andMinimal Determinacy are satisfied. Thus, Proposition 4.3 yields
the Wisdom of Crowds principle for the estimation of some real-
valued (or, more generally, vector-valued) quantity: if each voter
estimates the quantity, and their estimates are independent, unbi-
ased, and have finite variance, then the average of their estimates
will converge in probability to the correct answer. ⋄

The classic examples of theWisdom of Crowds involve a numerical
quantity (e.g. the weight of an ox). But Example 4.4 also applies
when V is a vector space — even an infinite-dimensional vector
space. For example, letV be the space of all continuous real-valued
functions on an interval [a, b], equipped with the inner product
⟨v, w⟩ :=

∫ b
a v(r)w(r) dr for all v, w ∈ V. Many decision problems

involve estimating such functions. For example, an oligopolistic
firm must estimate the shape of the demand curve to determine
its optimal pricing strategy. A central bank must estimate the
functional relationship between the Consumer Price Index and
other macroeconomic variables, to determine whether it should
intervene in the money supply. And the IPCC must estimate the
functional relationship between atmospheric CO2 levels and other
meteorological variables. Each expertmight have her own opinion,
and the committee must aggregate these opinions to obtain a
group estimate. Example 4.4 says that, under certain conditions, a
large enough committee can obtain a good estimate by averaging
the opinions of the committee members.

Another interesting application is probabilistic opinion pooling
(Genest and Zidek, 1986; Clemen and Winkler, 1999). Let X be
a finite set, and let ∆(X ) be the probability simplex in RX . We
interpretX as the space of possible resolutions of someuncertainty
(e.g. the weather or the stock market next Tuesday). Each voter
has an opinion about this uncertainty, in the form of a probability
vector in ∆(X ). We wish to aggregate these opinions to construct
the best ‘‘collective opinion’’ in S. If we define V := RX and
V := S := ∆(X ), then the average rule of Example 4.4 is called
the linear pooling rule: the collective opinion is the average of the
opinions of the voters.

There is another approach to probabilistic opinion pooling. Let
∆+(X ) denote the set of probability vectors with full support on
X . For any p = (px)x∈X in ∆+(X ), let log(p) := [log(px)]x∈X , an
element of RX . Let Vlog := {log(p); p ∈ ∆+(X )}, and let Clog be the
closed convex hull of Vlog in RX . Define flog : Clog −→ ∆+(X ) as
follows: for any c = (cx)x∈X in Clog, we define flog(c) := (ecx/K )x∈X ,
where K :=

∑
x∈X ecx . The resulting mean partition rule Flog =

(RX ,Vlog, flog) is called the logarithmic pooling rule.9 In effect, this
rule takes the geometric average of the opinions of the individual
voters, and renormalizes it to obtain a probability vector.

Proposition 4.3 can be invoked to obtain Wisdom of Crowds
justifications for both the linear and logarithmic pooling rules, by
specifying a suitable populaceP . In the interests of brevity, wewill
suppress the details. The next example shows an entirely different
way that logarithmic probabilities can arise.

Example 4.5 (Log-likelihood Scoring Rules). Let S be a finite set. Let
p : S −→ ∆(S) be a function (called an error model ). For any
s, t ∈ S , we interpret p(t|s) be the probability that a voter will
believe that the true state is t , when it is actually s. LetV := RS , and
for all r ∈ S , define vr := (vr

s )s∈S ∈ V by setting vr
s := log[p(r|s)],

for all s ∈ S. Let V := {vr}r∈S , let C be the convex hull of V , and let
f plog := fscr : C −→ S be the scoring rule defined in Example 3.1(f).
We will refer to this as a log-likelihood scoring rule.

Assume the votes of the different voters are independent ran-
dom variables (conditional on the true state of nature). Any error
model p′ induces a behaviourmodel ρ ′ by setting ρ ′(vr |s) := p′(r|s)
for all r, s ∈ S . For any η > 0, let Pp,η be the populace consisting
of all behaviour models ρ ′ induced by an error model p′ such
that

⏐⏐p′(t|s) − p(t|s)
⏐⏐ < η for all t, s ∈ S. If p(t|s) > 0 for all

t, s ∈ S , then the populace Pp,η satisfies Minimal Determinacy (see
Proposition A.2(a) in the Appendix). Now fix ϵ > 0, and for all

9 Flog is a mean partition rule because flog is uniformly continuous on Clog . To
see this, note that flog is differentiable, and for any c ∈ Clog , if flog(c) = p, then
∂x flog(c)x = px − p2x for all x ∈ X , while ∂y flog(c)x = −px py for all x ̸= y ∈ X . Thus,
|∂y flog(c)x| < 1 for all x, y ∈ X ; uniform continuity follows.
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s ∈ S , define Cϵ
s := {c ∈ C; cs > ct+ϵ for all t ̸= s}. If C′

ϵ :=
⋃

s∈SC
ϵ
s ,

then f plog satisfies (M3) when restricted to C′. If ϵ and η are small
enough, then Pp,η satisfies Identification with respect to f plog and C′

ϵ

(see Proposition A.2(b) in the Appendix).
Thus, Proposition 4.1 yields an extension of the Condorcet Jury

Theorem to any log-likelihood scoring rule. If a sufficiently large
number of independent random voters are drawn from the popu-
lace Pp,η , then the log-likelihood scoring rule F p

log will select the
true state of nature, with probability arbitrarily close to 1. For
example, if S is the space of preference orders on some set of
alternatives, then this conclusion holds for the Kemeny rule, given
the error model proposed by Young (1986, 1988, 1995, 1997). ⋄

For any error model p, the outcome of the rule F p
log defined in

Example 4.5 will be the maximum likelihood estimator (MLE) of
the true state.10 Conversely, any scoring rule can be interpreted as
a log-likelihood scoring rule for some error model, and in many
cases, these are in fact maximum likelihood estimators (Pivato,
2013b Theorem 2.2(a,b)). For example, the Kemeny rule (Exam-
ple 3.1(e)) is the MLE for a natural error model on the space of
preference orders (Young, 1986, 1988, 1995, 1997).More generally,
on any metric space (S, d) which is ‘‘sufficiently symmetric’’, the
generalized median rule (Example 3.1(d)) is the MLE for any ex-
ponential error model, where p(s|t) = C exp[−α d(s, t)], for some
constants α, C > 0 (Pivato, 2013b Corollary 3.2).11 For example,
the median rule has been proposed as an MLE for equivalence re-
lations and other binary relations (Régnier, 1977; Barthélémy and
Monjardet, 1981, 1988). Example 4.5 is a complementary result:
not only is F p

log an MLE, but it is highly likely to identify the true
state, in the large-population limit. (For a similar result, see Xia
(2015, Theorem 1 and Example 3).)

Examples 4.2 and 4.4 are well-known results from epistemic
social choice theory. But Example 4.5 is new, as is the next and last
example of this section.

Example 4.6 (The Wisdom of the Median Voter). Let S be a finite
subset of R, and let F be the median voting rule from Exam-
ple 3.1(c). Let ϵ > 0, and let P be the set of all behaviour models
ρ : S −→ ∆(V) such that, for all s ∈ S ,

∑
r<sρs(vr ) < 1

2 − ϵ

and
∑

r≤sρs(vr ) > 1
2 + ϵ (and hence, ρs(vs) > 2ϵ). If C′

s is the
set defined Example 3.1(d), then it is easily verified that this error
model satisfies Identification. Meanwhile, Minimal Determinacy is
automatically satisfied because V is finite. Thus, Proposition 4.3
says that themedian estimate of a large group of voterswill be close
to the correct value, with high probability. ⋄

The error model in Example 4.6 may seem somewhat unreal-
istic, since each voter must have a positive probability of exactly
identifying the correct value. But ϵ could be extremely small, so
this is not as restrictive as it seems. Also, the median error of each
voter must be zero. This would be plausible if we had reason to
believe that the error distribution of each voter was symmetric
around zero (e.g. a normal distribution). But itmight be implausible
in other scenarios.

5. Correlated voters

The problem with the model in Section 4 is its assumption that
the errors of the voters are stochastically independent. We will
now extend this model to allow for correlated errors. To model

10 This follows from Theorem 2.2(b) of Pivato (2013b). Note that F p
log is ‘‘balanced’’

scoring rule (in the terminology of Pivato (2013b)) because the way f plog is defined
from the error model p.
11 In particular, this is the case if (S, d) has a transitive group of isometries. For
example, a sphere has this degree of symmetry. But in fact, a weaker (but more
technical) condition is sufficient.

such correlations, we introduce a collective behaviour model: a
function that maps each possible state of the world to a probability
distribution over profiles. A wide variety of collective behaviour
models are mathematically possible, but most of these will not
occur in reality because the collective behaviour of an actual elec-
torate is a partly determinedby sociological, political and economic
factors, the educational system and the communications infras-
tructure, among other things. We will not explicitly model these
factors; instead, we will represent them implicitly by focusing on
a subset of possible collective behaviour models, which we call a
culture. We will suppose that any actual electorate is drawn from
this culture. In particular, any populace fromSection 4 yields such a
culture (see Example 5.1). For any culture, we define two functions,
σ and κ; the former measures the indeterminacy of the average
voter, while the latter measures the correlation between voters.
The main results of this section (Proposition 5.2 and Theorem 5.3)
say that, if σ is constant and κ decays as the population grows, then
the mean partition rule applied to a large electorate will get the
correct answer with very high probability.

Culture. If the voters are correlated, thenwe canno longer consider
their vote distributions separately. Instead, we must consider the
joint distribution of all the voters. Given a set I of individuals
and a set V of votes, a profile is an element V = (vi)i∈I of
VI , which assigns a vote vi to each individual i in I. A collective
behaviour model on V is a function ρ : S −→ ∆(VI), which
determines a probability distribution ρ(s) over the set of possible
profiles, for each possible state s ∈ S. We cannot assume that we
have detailed knowledge of the collective behaviour model of a
society. We will only suppose that it arises from some family of
collective behaviour models with certain statistical properties. For
this reason, we define a culture on V to be a sequenceℜ = (RI )∞I=1
where, for all I ∈ N, RI is a set of collective behaviour models on
V , for a population of size I . Note that a culture is not intended as
a description of a single society facing a single epistemic problem.
It describes an infinite family of possible societies, of all possible
sizes, facing a family of possible decision problems.

Correlation. We will need to quantify the correlation between
voters arising from a culture. Let I ∈ N and let I := [1 . . . I]. Fix
a collective behaviour model ρ : S −→ ∆(VI), and some state
s ∈ S. For all i ∈ I, let

v̂i :=

∫
V
vi dρ[V|s]

be the expected value of individual i’s vote, given the state s.
Let ⟨_, _⟩ be an inner product on V. Fix s ∈ S , and let V =

(vi)i∈I be a ρ(s)-random profile. For any i ∈ I, the random
vector (vi − v̂i) measures the amount by which individual i’s vote
deviates from its expected value (if the voters satisfy Identification,
then we can think of this as the ‘‘error’’ in i’s vote). The inner
product

⟨
vi − v̂i, vj − v̂j

⟩
measures the extent to which the errors

of voters i and j are ‘‘aligned’’ with respect to the geometry of V.
The covariance of voters i and j is the expected value of this inner
product:

cov(vi, vj) := E[
⟨
vi − v̂i, vj − v̂j

⟩
].

This measures the amount, on average, by which we can expect
the errors of i and j to align in same direction in V. Note that
var[vi] = cov(vi, vi). We then define the covariance matrix of
ρ(s) to be the I × I matrix cov[ρ(s)] := [bi,j]Ii,j=1, where, for all
i, j ∈ [1 . . . I], bi,j := cov(vi, vj).

It is important to note that bi,j measures the covariance of errors,
not the covariance of votes. For example, suppose that i and jwere
not only perfectly reliable, but that there was some v ∈ V with
F (v) = s such that vi = vj = v with probability 1. Then their
votes would be perfectly correlated, but we would have bi,j = 0,
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since their error terms would both be zero. Likewise, if bi,j < 0,
this means that the errors of i and j are anticorrelated — it does not
mean their votes are anticorrelated.

Since we do not know the true collective behaviour model of
society, andwe do not know the true state of nature, we also do not
know the true covariancematrix of the voters.We can only assume
that it comes from some family satisfying certain broad qualitative
properties. For this reason, we define a covariance structure to be
a sequence B = (BI )∞I=1, where, for all I ∈ N, BI is a collection of
I × I symmetric, positive semidefinite matrices. The elements of BI
are the possible covariance matrices that we could see in a society
of size I . We say thatB is the covariance structure of the culture ℜ

if, for every I ∈ N, BI is the set of all covariance matrices cov[ρ(s)],
for any ρ ∈ RI and s ∈ S.

For any collective behaviour model ρ ∈ RI , and any state
s ∈ S , the covariance matrix B = cov[ρ(s)] combines two sorts
of information: the diagonal entries encode the ‘‘randomness’’
of individual voters, whereas the off-diagonal entries encode the
correlations between voters. To be precise, for any i ∈ [1 . . . I], the
diagonal entry bi,i is the variance of individual i’s vote in a ρ(s)-
random profile. For any distinct i, j ∈ [1 . . . I], the off-diagonal
entry bi,j is the covariance between the error of individual i’s vote
and the error of individual j’s vote, in a ρ(s)-random profile. (Note
that bi,j could be negative, reflecting anti correlation between the
errors of i and j.) For this reason, we will associate two distinct
numerical values with each covariance matrix B ∈ BI . We define

σ (B) :=
1
I

I∑
i=1

bi,i, and κ(B) :=
1

I(I − 1)

I∑
i,j=1
i̸=j

bi,j. (2)

In other words, σ (B) is the average of the diagonal entries (i.e., the
average variance of the voters’ errors), while κ(B) is the average
of the off-diagonal entries (i.e., the average covariance between the
voters’ errors).

Let F = (V,V, f ) be amean partition rule, and let C be the closed
convex hull ofV . Letℜ = (RI )∞I=1 be a culture onV , with covariance
structure (BI )∞I=1. We will say that ℜ is sagacious with respect to
F if there exists some set C′

⊆ C satisfying conditions (M3) and
(M4), such that ℜ satisfies the following three properties relative
to C′ and ⟨_, _⟩.

Identification. For any I ∈ N, any ρ ∈ RI , and any s ∈ S , if (vi)i∈I
is a ρ(s)-random profile, then for all i ∈ [1 . . . I], the expected
value of vi is in the f -preimage of s inside C′ — i.e. Eρ(s)[vi] ∈

f −1
{s} ∩ C′.

Asymptotic determinacy. For any I ∈ N, let σ (I) :=

supB∈BI
σ (B). Then limI→∞

σ (I)
I = 0.

Asymptotically weak average covariance. For any I ∈ N, let
κ(I) := supB∈BI

κ(B). Then limI→∞κ(I) = 0.

Here, the key condition is Asymptotically Weak Average Covariance.
This says that voters’ errors can be correlated, but as the society
grows large, the average covariance between the errors of different
voters must become small. Identification has exactly the same
interpretation as in Section 4. The condition of Asymptotic Deter-
minacy is a very weak form of the Minimal Determinacy condition
from Section 4. To see, this, first note that Minimal Determinacy
could be weakened to the following condition:

Average Determinacy. There is some constant M > 0 such that,
for any I ∈ N, and any B ∈ BI , σ (B) < M .

This condition allows some voters to be very unpredictable, as
long as the average variance of the voters is bounded.12 Clearly,

12 For a version of the CJT assuming Average Determinacy, see Grofman (1989,
Theorem II). For a version of the CJT with a condition similar to Asymptotic De-
terminacy, see Boland (1989, Theorem 3).

Minimal Determinacy implies Average Determinacy. But Asymptotic
Determinacy is even weaker than Average Determinacy: it says that
even the average variance of the voters can grow with population
size, as long as it does not grow too quickly. (To be precise: its
growth rate must be sublinear.)

Example 5.1. Let F be a mean partition rule, and let P be a saga-
cious populace for F , as defined in Section 4. Given any behaviour
models ρ1, . . . , ρI ∈ P , and any s ∈ S , let ρ1 ⊗ · · · ⊗ ρI (s) be
the product probability measure on V I — that is, the distribution
of a random profile where v1, . . . , vI are independent random
variables, with vi distributed according to ρi(s) for all i ∈ [1 . . . I].
This yields a collective behaviour model ρ1 ⊗ · · · ⊗ ρI : S −→

∆(V I ). For all I ∈ N, define RI := {ρ1 ⊗ · · · ⊗ ρI; ρ1, . . . , ρI ∈ P},
and then let ℜ := (RI )∞I=1. Then ℜ is a sagacious culture for F . ⋄

The next result says that, if S is finite, and a random profile
of votes is drawn from a sagacious culture, and the population is
sufficiently large, then with very high probability, the outcome of
the voting rule will be the true state of nature.

Proposition 5.2. Let F be a mean partition rule ranging over a finite
set S , and let (RI )∞I=1 be a sagacious culture for F . For all I ∈ N, let
ρI ∈ RI . Then for any s ∈ S ,

Prob
(
F (v1, v2, . . . , vI) = s | (vi)Ii=1 is a ρI-random profile

)
−−−−I→∞

−→ 1.

In fact, Proposition 5.2 is a special case of ourmain result, which
also applies when S is infinite. It says that, if a random profile
of votes is drawn from a sagacious culture, and the population is
sufficiently large, then with very high probability, the outcome of
the voting rule will be very close to the true state of nature.

Theorem 5.3. Let F be a mean partition rule ranging over a set S ,
and let (RI )∞I=1 be a sagacious culture for F . For all I ∈ N, let ρI ∈ RI .
Then for any s ∈ S , and any open set U ⊂ S containing s,

Prob
(
F (v1, v2, . . . , vI) ∈ U | (vi)Ii=1 is a ρI-random profile

)
−−−−I→∞

−→ 1.

In the case of dichotomous choice (i.e. the classical Condorcet
Jury Theorem), this result is very similar to a result proved by
Ladha (1992).13 Theorem 5.3 extends this result to a much larger
family of epistemic social choice rules, and also weakens Minimal
Determinacy to Asymptotic Determinacy. Using Theorem 5.3, it is
straightforward to extend Examples 4.2 and 4.4–4.6 to a setting
with correlated voters; we leave the details to the reader.

To obtain a sagacious culture – in particular, to satisfy Asymp-
totically Weak Average Correlation – we need to make κ(I) small. To
this end, we could try to reduce the positive correlation between
voters — i.e. reduce the number and magnitude of positive entries
in the covariancematrices inB. But we could also increase the anti
correlation between voters — i.e. increase the number and mag-
nitude of negative entries in these covariance matrices. One could
cultivate such anticorrelation bymaximizing the cognitive diversity
of the voter population (Page, 2008, Chapter 8; Landemore, 2013,
Section 6.3).14 One could also maximize the diversity of informa-
tion and opposing opinions to which voters are exposed; this is a
strong argument for maximal freedom of the press in democratic
polities (Ladha, 1992). It is also the basis for the adversarial legal

13 See Ladha (1992, Corollary, p.628) and Ladha (1995, Proposition 1).
14 Another argument for cognitive diversity treats collective decisions as creative
problem-solving processes, akin to massively multidimensional nonlinear opti-
mization problems (Page, 2008; Landemore, 2013). But this is totally unrelated to
the ‘‘anticorrelation’’ argument presented here.
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system favoured in common-law jury trials. Finally, such anticorre-
lation can arisewhen voters split into opposing factions or political
parties, as occurs in parliamentary debates.15 Indeed, Theorem 5.3
remains true if we replace Asymptotically Weak Average Correlation
with the weaker condition that lim supI→∞κ(I) ≤ 0 — in particu-
lar, κ(I) could be negative. Thus, for epistemic democracy, there is
no such thing as ‘‘too much’’ anticorrelation between voters.

In general, a culture might be sagacious with respect to some
voting rules, and not sagacious with respect to others. But in some
cases, a culture can be sagacious in a way that is independent of
the choice of voting rule. Let S be a finite set, let V be an inner
product space, and let ℜ = (RI )∞I=1 be a culture on V. We will say
that ℜ is identifiable if, for all s ∈ S , there is a compact, convex
subset Ks ⊂ V such that, for any I ∈ N and ρ ∈ RI , if (vi)i∈I is a
ρ(s)-random profile, then for all i ∈ [1 . . . I], the expected value of
vi is in Ks. We also require Ks and Kt to be disjoint for any distinct
s, t ∈ S; this is a minimal condition for any possibility of epistemic
social choice.Wewill say that a covariance structureB = (BI )∞I=1 is
sagacious if it satisfies Asymptotic Determinacy and Asymptotically
Weak Average Covariance.

Proposition 5.4. If ℜ is an identifiable culture, with covariance
structure B, and B is sagacious, then there is a mean partition rule
F on V such that ℜ is sagacious for F .

So, what sort of covariance structures are sagacious? We now
turn to this question.

6. Social networks

This section explores covariance structures arising from social
networks; our goal is derive sagacity of the covariance structure
from the geometry of the network.Wewill not workwith a specific
social network, but rather, with an entire family of social networks,
of all possible sizes — we call this a social web. We first consider
a scenario where each voter is only correlated with her nearest
neighbours in the network. In this case, the resulting covariance
structure will be sagacious as long as the average voter does not
acquire new neighbours ‘‘too quickly’’ as the population increases
(Proposition 6.2). In particular, this result applies to social net-
workswith power law degree distributions, which arise frequently
in applications (Example 6.1). We then consider a more general
model, where voters can be correlated even if they are not neigh-
bours. In this case, there is a tradeoff between two asymptotics:
the asymptotic decay rate of the covariance between voters as a
function of their distance in the social network, and the asymptotic
growth rate of the ‘‘sphere of radius r ’’ around a typical voter, as r
becomes large — roughly speaking, this measures the ‘‘dimension’’
of the network. In this case, the resulting covariance structure will
be sagacious as long as the correlations decay quickly enough to
balance the sphere-growth rate (Proposition 6.5). In particular, for
a finite-dimensional network, it is sufficient for the voters to have
an exponential covariance decay rate (Example 6.4(a)).

Social webs. A graph is a set I equipped with a symmetric, reflex-
ive binary relation ∼. If I is a set of voters, then we can interpret
a graph as a social network: if i ∼ j, we interpret this to mean
that voters i and j are somehow ‘‘socially connected’’ (e.g. friends,
family, neighbours, colleagues, classmates, etc.).

We cannot assume that we have exact knowledge of the social
network topology;we can only assume that belongs to some family
of graphs satisfying broad qualitative properties. For this reason,
we define a social web to be a sequenceN = (NI )∞I=1, where, for all
I ∈ N, NI is a set of possible graphs of size I . Thus, our hypotheses

15 However, the epistemic deficiencies due to correlation within each faction
might outweigh the epistemic benefits of anticorrelation between factions.

will be formulated in terms of the asymptotic properties of the
graphs in NI , as I → ∞. But before we can formulate these
hypotheses, we need some basic concepts from graph theory.

Sublinear average degree growth. For any i ∈ I, the degree
of i is the number of links i has in the graph (I, ∼). Formally,
deg(i, ∼) := #{j ∈ I; i ∼ j}. If |I| = I , then the average degree of
the graph (I, ∼) is defined:

avedeg(I, ∼) :=
1
I

∑
i∈I

deg(i, ∼).

This is the average number of social links of a voter in the so-
cial network described by (I, ∼). We then define avedeg(NI ) :=

sup(I,∼)∈NI
avedeg(I, ∼). We will say that a social web (NI )∞I=1

exhibits sublinear average degree growth if

lim
I→∞

1
I
avedeg(NI ) = 0. (3)

For instance, if avedeg(NI ) remains bounded as I → ∞, then the
limit (3) is obviously satisfied. However, the limit (3) even allows
avedeg(NI ) to grow as I → ∞, as long as it growsmore slowly than
a linear function.

Example 6.1 (Asymptotic Degree Distributions). Let (I, ∼) be a
graph. For all n ∈ N, let

µ(I,∼)(n) :=
1
I
# {i ∈ I ; deg(i, ∼) = n} .

This defines a probability distribution µ(I,∼) ∈ ∆(N), called the
degree distribution of (I, ∼). If µ ∈ ∆(N) is another probability
distribution, then we define the distance between µ and µ(I,∼) by

d(µ, µ(I,∼)) :=

∞∑
n=1

n ·
⏐⏐µ(I,∼)(n) − µ(n)

⏐⏐ .
Wewill say that a social webN has asymptotic degree distribution
µ if

lim
I→∞

sup
(I,∼)∈NI

d(µ, µ(I,∼)) = 0.

Let avedeg(µ) :=
∑

∞

n=1µ(n) n. If this value is finite, and N has
asymptotic degree distribution µ, then it is easy to check that
avedeg(NI ) will converge to avedeg(µ) as I → ∞; thus, N will
have sublinear average degree growth.

For example, many social networks seem to exhibit a ‘‘power
law’’ degree distribution of the form µ(n) ≈ K/nα , for all n ∈

N, where α > 1, and where K > 0 is a normalization con-
stant (Barabási and Albert, 1999; Albert et al., 1999). This is a
well-defined probability distribution on N, as long as α > 1.
(Typically, 2 < α < 3.) Networks with power law distributions
often contain a surprisingly large number of ‘‘superconnected’’ or
‘‘hub’’ individuals, whose degrees are much larger than that of the
typical person. Thus, in such networks, some individuals can be
correlatedwith a very large number of other individuals. However,
avedeg(µ) is still finite, as long as α > 2. Thus, if a social web has a
power law asymptotic degree distribution with α > 2, then it will
have sublinear average degree growth. ⋄

Not all social webs have sublinear average degree growth. For
example, if α < 2 in Example 6.1, then avedeg(NI ) will grow at a
superlinear rate as I → ∞. For another example, suppose NI is
generated by sampling the Erdös–Renyi ‘‘random graph’’ model,
where there is a constant probability p that any two randomly
chosen agents are linked. Then avedeg(NI ) ≈ p I , which grows
linearly as I → ∞. However, these are not considered realistic
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Fig. 7. (Example 6.3) (a) An infinite, two-dimensional grid has growth bounded by γ (r) = 4 r . For example, if i is the black node, then deg5(i, ∼) = 20 (the number of grey
nodes). (b) If (J , ∼) is an infinite subgraph of a two-dimensional grid, then its growth is also bounded by γ (r) = 4 r . In this case, if i is the black node, then deg5(i, ∼) = 9.

models for social networks in most situations, because the (Pois-
son) asymptotic degree distribution of the Erdös–Renyi model is a
poor fit to the empirical data (Albert et al., 1999; Newman et al.,
2002).

Nearest-neighbour covariance structures. Let B = (BI )∞I=1 be a
covariance structure, and let N = (NI )∞I=1 be a social web. We will
say thatB is a nearest-neighbour covariance structure forN if:

• For any I ∈ N and B ∈ BI , there is some graph (I, ∼) in NI
and some identification of I with [1 . . . I] such that, for all
i, j ∈ [1 . . . I], we have bi,j ̸= 0 only if i ∼ j,

• There is some constant M > 0 such that, for any I ∈ N and
B ∈ BI , we have |bi,j| ≤ M for all i, j ∈ [1 . . . I].

We now come to the first result of this section.

Proposition 6.2. If a social web N has sublinear average degree
growth, then any nearest-neighbour covariance structure for N is
sagacious.

In fact, Proposition 6.2 is only a special case of the main result
of this section. But before we can state this result, we need more
terminology.

Generalized degrees. Let (I, ∼) be a connected graph. A path in
(I, ∼) is a sequence of vertices i0, i1, . . . , iL ∈ I such that i0 ∼

i1 ∼ · · · ∼ iL; we say this path has length L, and that it connects
i0 to iL. For any i, j ∈ I, let d∼(i, j) be the length of the shortest
path connecting i to j in (I, ∼). For completeness, we also define
d∼(i, i) := 0 for all i ∈ I. Observe that d∼ is a metric on I. (It is
called the geodesic metric of the graph.) For any r ∈ N and i ∈ I,
we define the r- degree of i as degr (i, ∼) := #{j ∈ I; d∼(i, j) = r}.
Thus, deg1(i, ∼) is just the degree of i, as defined above. Now let
γ : N −→ [0, ∞] be a function (typically, increasing). For any
i ∈ I, we define the γ -degree of i by

degγ (i, ∼) := sup
r∈N

degr (i, ∼)
γ (r)

. (4)

We then define

avedegγ (I, ∼) :=
1
I

∑
i∈I

degγ (i, ∼), (5)

and avedeg
γ
(NI ) := sup

(I,∼)∈NI

avedegγ (I, ∼). (6)

We will say that a social web (NI )∞I=1 exhibits sublinear average
γ -degree growth if

lim
I→∞

1
I
avedeg

γ
(NI ) = 0. (7)

For instance, suppose we define γ1 : N −→ {1, ∞} by

γ1(r) :=

{
1 if r = 1;

∞ if r ≥ 2. (8)

Then clearly, degγ1 (i, ∼) = deg(i, ∼) for all i ∈ I and all (I, ∼) ∈

NI . Thus, formula (7) is equivalent to formula (3); thus, a social web
will have sublinear average γ1-degree growth if and only if it has
sublinear average degree growth.

Example 6.3 (Social Networks from Infinite Graphs). Let J be an
infinite set of vertices, and let ∼ be a graph structure on J ; this is
called an infinite graph . If γ : N −→ [0, ∞] is some function, then
(J , ∼) has γ -bounded growth if we have degr (j, ∼) ≤ γ (r), for all
j ∈ I and all r ∈ N. In other words, degγ (j) ≤ 1 for all j ∈ J .

For example, if (J , ∼) is the infinite two-dimensional grid
shown in Fig. 7(a), then degr (i) = 4 r for all r ∈ N; thus,
(J , ∼) has growth bounded by the function γ (r) := 4 r . More
generally, if (J , ∼) is an infinite subgraph of a two-dimensional
grid, like the one shown in Fig. 7(b), then its growth bounded by the
function γ (r) := 4 r . Likewise, if (J , ∼) was an infinite subgraph
of a D-dimensional grid, then it would have growth bounded by a
polynomial function γ (r) := K rD−1 (for some constant K > 0). As
these examples show, a graph with a ‘‘D-dimensional’’ geometry
has polynomially bounded growth of degree D − 1.

In contrast, suppose (J , ∼) is an infinite tree where every
node has degree 3, as shown in Fig. 8(a). Then (J , ∼) has growth
bounded by γ (r) = 3 (2r−1). More generally, if M ∈ N, and (J , ∼)
is any graph where every vertex has degree (M + 1) or less, then
(J , ∼) has growth bounded by the exponential function γ (r) :=

Mr .
For all I ∈ N, let NI be a collection of connected subgraphs of

(J , ∼) with exactly I vertices; then the sequence N = (NI )∞I=1
is a social web, which we will say is subordinate to (J , ∼).
Heuristically, the vertices in the graph (J , ∼) represent the set of
all ‘‘potential’’ people who could exist, and the links in (J , ∼) are
all ‘‘potential’’ social connections between them. Thus, any actual
social network will be some finite subgraph of (J , ∼); these are
the graphs which appear in N. If (J , ∼) has growth bounded by
the function γ , then it is easy to see that avedeg

γ
(NI ) ≤ 1 for all

I ∈ N; thus, the asymptotic condition (7) is trivially satisfied, so
thatN has sublinear average γ -degree growth. ⋄

Correlation decay. Let (I, ∼) be a graph, and let B ∈ RI×I be an
I × I matrix (e.g. a covariance matrix). Let β : N −→ R+ be
a function (typically, decreasing). We will say that the matrix B
exhibits β-decay relative to (I, ∼) if (after bijectively identifying
I with [1 . . . I] in some way), we have bi,j ≤ β[d∼(i, j)] for all
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Fig. 8. (Example 6.3) (a) If (J , ∼) is an infinite tree where all nodes have 3 edges, then its growth is bounded by γ (r) = 3 (2r−1). (b) If (J , ∼) is eight infinite binary trees
around a hub, then its growth is bounded by γ (r) = 8 (2r−1).

i, j ∈ I. In particular, B exhibits exponential decay if there are
some constantsλ ∈ (0, 1) andK ≥ 0 such that bi,j ≤ K λd∼(i,j) for all
i, j ∈ I. Exponential correlation decay is a typical phenomenon in
the spatially distributed stochastic processes studied in statistical
physics, such as Ising models of ferromagnetism (Penrose and
Lebowitz, 1974; Procacci and Scoppola, 2001; Bach and Møller,
2003). The opinions of the voters in a social network can be seen
as such a spatially distributed stochastic process.

We will say that a covariance structure B = (BI )∞I=1 exhibits
β-covariance decay relative to social webN = (NI )∞I=1 if, for every
I ∈ N, and every matrix B ∈ BI , there is some graph (I, ∼) in
NI such that B exhibits β-decay relative to (I, ∼). For example, let
M > 0, and define β(1) := M while β(r) := 0 for all r ≥ 2. Then
B exhibits β- covariance decay relative to N if and only if B is a
nearest-neighbour covariance structure forN.

Subordinate covariance structures.Wewill say that a covariance
structureB is subordinate to a social webN if there exist functions
β : N −→ R+ and γ : N −→ [0, ∞] such that N has sublinear
average γ -degree growth,B exhibits β- covariance decay relative
toN, and also

∞∑
r=0

γ (r)β(r) < ∞. (9)

(Here, we adopt the convention that∞·0 = 0.) Note that the faster
γ (r) grows as r → ∞, the faster β must decay to zero in order for
inequality (9) to be satisfied.

Example 6.4. (a) Let M,D ∈ N and suppose that N is subordinate
to an infinite, D-dimensional grid or anM-ary tree, as described in
Example 6.3. Let γ (r) := Mr for all r ∈ N; then N has sublinear
average γ -degree growth. Let λ < 1/M , let β(r) := λr for all
r ∈ N; and suppose that every matrix inB exhibits β-exponential
covariance decay with respect to some graph in N. Let c := M λ;
then 0 < c < 1, and

∞∑
r=0

γ (r)β(r) =

∞∑
r=0

Mr λr
=

∞∑
r=0

cr =
1

1 − c
< ∞.

Thus, inequality (9) is satisfied, soB is subordinate toN.
(b) Suppose N has sublinear average degree growth, and B

is a nearest-neighbour covariance structure for some social web
N. As we have seen, this means there is some constant M > 0
such that β(r) := M if r = 1 and β(r) := 0 for all r > 0,
and B exhibits β- covariance decay relative to N. Now define γ1 :

N −→ {1, ∞} by formula (8). Then inequality (9) is automatically
satisfied. By comparing formulae (3) and (7), we see that N has
sublinear average γ1-degree growth. Thus, B is subordinate to
N. ⋄

We now come to the main result of this section.

Proposition 6.5. Let N be a social web. Then any covariance
structure which is subordinate toN is sagacious.

For example, Proposition 6.2 follows by applying Proposi-
tion 6.5 to Example 6.4(b).

7. Deliberation

A growing literature argues that deliberation can improve the
epistemic efficacy of democratic decision-making (Elster, 1998;
Fishkin and Laslett, 2003; Landemore and Elster, 2012; Landemore,
2013). Deliberation can edify voters, so that they hold more in-
formed, objective, and nuanced opinions. But it can also increases
correlation between voters, perhaps leading to ‘‘groupthink’’. It
is possible that the groupthink effect outweighs the edification
effect, so that on the balance, deliberation leads toworse decisions.
However, this section offers some evidence that this need not
occur: we will show that, under certain hypotheses, the sagacity
of a culture is preserved under a simplemodel of deliberation. This
does not prove that deliberationmakes groups smarter (our simple
model ignores edification effects). But at least deliberation does not
necessarily make groups stupider.

We will adapt a well-known model of deliberation proposed
by DeGroot (1974):16 we represent a deliberative institution as
a family of linear transformations which can be applied to the
profile of (vector-valued) opinions of the voters; in effect, these
transformations replace each voter’s opinion with a weighted av-
erage of her own opinion and those of her peers. We call such
institutions local if no single voter has too strong an influence
over other voters in this averaging process. We show that local
deliberative institutions cannot convert a sagacious culture into a
non-sagacious culture (Proposition 7.1).

Let I be a set of voters. For all distinct i, j ∈ I, let di,j ≥ 0 be
the ‘‘influence’’ of voter j on voter i. This could be determined by
the level of respect or trust which i has for j. Note that influence
is not symmetric: we may have di,j ̸= dj,i. The diagonal entry di,i
measures i’s confidence in her own opinions. Let D := [dij]i,j∈I . We
will assume that D is a stochastic matrix — that is,

∑
j∈Idi,j = 1,

for all i ∈ I. We will refer to D as an influence matrix . We cannot
assume exact knowledge of the pattern of social influences in the
society. Thus, instead of fixing a single influence matrix D, we will
consider an entire family of such influence matrices. Formally, we

16 For an interesting recent application of the DeGroot model, see Golub and
Jackson (2010).
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define a deliberative institution to be a sequence D = (DI )∞I=1,
where for all I ∈ N, DI is a family of I × I influence matrices.

A deliberative institution is not a culture. It is a transformation,
which can be applied to a culture to obtain another culture, as we
now explain. For the rest of this section, suppose that V is a convex
subset of a vector space V. Let V = (vi)Ii=1 be an I-voter profile in
V I . Given an I × I stochastic matrix D (e.g. an element of DI ), we
define D · V to be the profile V′

= (v′

i)
I
i=1, where, for all i ∈ I,

v′

i :=

I∑
j=1

di,j vj.

For all i ∈ I, vi represents the opinion of voter i before deliberation,
while v′

i represents her opinion after deliberation— it is aweighted
average of her own opinion and those of her peers, with the
weights reflecting their degree of ‘‘influence’’ over her.

Let ρ : S −→ ∆(VI) be a collective behaviour model on V , fix
s ∈ S , and suppose V = (vi)Ii=1 is a ρ(s)-random profile. Then D · V
is another random profile. We denote the probability distribution
of D · V by D ⊙ ρ(s). If we do this for all s ∈ S , then we obtain a
collective behaviour model D ⊙ ρ : S −→ ∆(V I ).

Now, let ℜ = (RI )∞I=1 be a culture on V , and let D = (DI )∞I=1 be
a deliberative institution. For all I ∈ N, we define

DI ⊙ RI := {D ⊙ ρ ; D ∈ DI and ρ ∈ RI} .

This is a collection of collective behaviour models on a population
of I voters. Heuristically, it has the following interpretation:

• RI is the set of collective behaviour models which could
exist before deliberation.

• DI is the set of the possible deliberations which could occur.
• DI ⊙ RI is the set of the collective behaviour models which

can exist after deliberation.

We then define the cultureD⊙ℜ := (R′

I )
∞

I=1, where, for each I ∈ N,
R′

I := DI ⊙ RI . We interpret this as the culture which arises when
voters drawn from the culture ℜ deliberate according toD.

For any j ∈ I, we define dj :=
∑

i∈Idi,j. This measures the ‘‘total
influence’’ of voter j on other voters. A deliberative institution D
is local if there exists a constant D > 0 (which we will call the
modulus ofD) such that, for all I ∈ N and allD ∈ DI wehavedj ≤ D
for all j ∈ I. In other words, the total influence of each voter in
any society is bounded; she can have a significant influence over at
most a small number of individuals (although shemight also have a
very small influence over a much larger number of individuals). In
particular, there are no ‘‘demagogues’’ who can strongly influence
a large number of people.

Proposition 7.1. Let F = (V,V, f ) be a mean partition voting rule,
where V is a convex subset of V. If D is a local deliberative institution,
and the culture ℜ is sagacious for F , then the culture D ⊙ ℜ is also
sagacious for F .

To illustrate the scope of this result, wewill now construct some
examples of local deliberative institutions. Given two deliberative
institutionsD and E, we defineD ·E := (CI )∞I=1, where for all I ∈ N,
CI := {DE; D ∈ DI and E ∈ EI}. Informally, D · E represents a
deliberative institution where the voters first deliberate according
to an influence matrix drawn from E, and then deliberate further
using a matrix drawn fromD.

Given any q ∈ [0, 1], we define qD + (1 − q)E := (CI )∞I=1,
where for all I ∈ N, CI := {qD + (1 − q)E; D ∈ DI and
E ∈ EI}. Informally, this represents a deliberative institutionwhere
the influence of one voter on another is a weighted average of
two forms of influence; one described by D and the other by E.
(For example, D might describe influences arising from personal
affection, while E describes influences arising from professional
respect and admiration.)

Proposition 7.2. Let D and E be two local deliberative institutions.
ThenD ·E is also local, and qD+ (1− q)E is local for any q ∈ [0, 1].

For any deliberative institution D and any n ∈ N, we define
Dn

:= (Dn
I )

∞

I=1, where for all I ∈ N, Dn
I := {D1 · · ·Dn; D1, . . .Dn ∈

DI}. Informally,Dn represents a deliberative institution where the
voters deliberate n times, using n influence matrices drawn from
D. Let D0

:= {I}, where I is the identity matrix (this represents
no deliberation). Finally, given any sequence q = (qn)∞n=0 in [0, 1]
with

∑
∞

n=0qn = 1, we can define the institution
∑

∞

n=0qnD
n in the

obvious way; informally, this is an institution where voters have
deliberated a very large number of times, and the total influence of
one voter on another is a weighted average of more direct, short-
term effects (corresponding to small values of n) andmore indirect,
longer-terms effects (corresponding to larger values of n).

Corollary 7.3. If D is a local deliberative institution with modulus
D, then

∑
∞

n=0qnD
n is local as long as

∑
∞

n=0qn D
n < ∞.

As a simple example, suppose DI contains only one matrix, D,
and furthermore, suppose thatmost of the entries inD are zero. For
any i, j ∈ I, write ‘‘j ⇝ i’’ if di,j > 0. Informally, this means ‘‘j has
somedirect influence on i’’. The relation⇝defines a directed graph,
which we might call the ‘‘influence network’’. Now let Dn

= [d(n)i,j ];
Thus, d(n)i,j > 0 if and only if there is at least one directed path
of length n from j to i in the influence network; in this case, d(n)i,j
measures the total indirect influence which j has on i via such
chains of intermediaries. Finally, if

∑
∞

n=1qnD
n

= [ei,j]i,j∈I , then
ei,j measures the total influence which j has on i over all possible
chains of all possible lengths (weighted by the vector q).

An interesting special case is when ⇝ is an acyclic digraph on
I (that is: a binary relation which is irreflexive, antisymmetric,
and whose transitive closure contains no cycles). In this case, the
society has a hierarchical structure: there are ‘‘opinion leaders’’
(who are further upstream with respect to ⇝) and ‘‘followers’’
(who are downstream from the opinion leaders). Informally, ‘‘opin-
ion leaders’’ correspond to pundits, politicians, public intellectuals,
and religious authorities, who can influence a large audience of
‘‘followers’’. The deliberative institution will be local as long as
the opinion leaders do not have too strong an influence on their
followers.

Conclusion

We have shown that a large class of voting rules will converge
to the correct solution in a large enough population, even if there is
considerable correlation between voters. This suggests, for exam-
ple, that a large committee of experts can often provide accurate
answers to technical questions in science, medicine, or engineer-
ing. It also seems to suggest that, under some conditions, modern
mass democracies could exhibit a high level of collective epistemic
competence. However, before drawing such a conclusion, it is
important to recognize that some of our modelling assumptions
may be overly optimistic. For example, perhaps the hypotheses of
Identification and Asymptotic Determinacy impute an unrealistically
high level of epistemic competence to the average voter. There is
now abundant empirical evidence that human beings are subject
to systematic cognitive biases, particularly in tasks which involve
logical or probabilistic reasoning (Kahneman, 2011). They also
overestimate small but spectacular risks (e.g. terrorism), while
neglecting threats which are less visible but far more pervasive
and hazardous (e.g. antibiotic resistant bacteria). They gravitate
towards simple solutions, based on simplistic moral narratives. A
more sophisticated theory of epistemic democracy should account
for such cognitive biases.

Ironically, the purported epistemic competency of large
groups may be self-refuting. By combining the strategic analysis
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of Austen-Smith and Banks (1996) with the ‘‘rational ignorance’’
of Downs (1957), a voter might decide that there is no reason for
her to become informed at all, because the group is going to get
the right answer anyways. If enough voters behave this way, then
the epistemic competency of the group may be undermined.17

To counteract such ‘‘epistemic free-riding’’, perhaps we must offer
each voter an individual incentive to get the right answer. It is
notable that Galton’s (1907) original inspirationwas a betting pool,
not a referendum.

We might also question our assumption that the set S of social
alternatives can be identified one-for-one with the possible states
of the world. In reality, the alternatives in S are generated by
some murky and epistemically dubious political process, and it
is possible that none of these alternatives correctly describes the
actual state of the world. Suppose S = {f , t1, t2, t3, t4}, where
f is a completely false theory, while the theories t1, t2, t3, t4 are
each somewhat flawed but ‘‘mostly true’’. Then even in a society of
highly competent voters, where 75% select one of the ‘‘mostly true’’
theories, the false theory f mightwin a plurality vote through vote-
splitting, contradicting the predictions of Example 4.2(b). And this
assumes that S consists of clear descriptions of possible worlds at
all; in some cases, the statements in S may be ambiguous or even
meaningless.

Furthermore, in many collective decisions, epistemic ques-
tions are inextricable intertwined with questions of ethical values
and/or individual preferences. In real life, elections and referenda
rarely boil down to objective, ‘‘purely factual’’ questions of the kind
considered in this paper. Even when it is possible to isolate such
‘‘purely factual’’ questions in policy debates, many voters cling
to the position which they find the most ideologically congenial,
rather than the position which is best supported by the available
scientific evidence.

It is also possible that modern mass democracies actually ex-
hibit a much higher degree of voter correlation than we allowed
in our models. The hypothesis of Asymptotically Weak Average
Correlation is consistent with a world where most correlations
arise from ‘‘local’’ interactions — e.g. through links in a social
network, or via person-to-person deliberation. It is even consistent
with an Internet-saturated world, where voters are influenced by
bloggers and other socialmedia celebritieswhose audiences follow
a power law distribution (Example 6.1). However, these mod-
els assume that the process which generates the social network
topology is entirely independent of the process which generates
the voters’ opinions. In practice, these two processes are highly
interdependent, because people preferentially affiliate with other
people who share their opinions. This can lead to the formation
of ‘‘echo chambers’’, within which deliberation actually reduces
epistemic competency, by reinforcing voters’ ideological biases
and cultivating manichean extremism (Sunstein, 2003, 2009). A
properly functioning epistemic democracy needs mechanisms to
prevent the formation of such echo chambers. Thus, many propos-
als for deliberative democracy emphasize randomly selected juries
or deliberative assemblies (Leib, 2004; Fishkin, 2009).

Finally, the growing concentration of media ownership inmod-
ern societies means that most voters get most of their information
about the world from a very small number of genuinely indepen-
dent sources. If we take the epistemic view of democracy seriously,
then one possible policy implication is that governments should be
much more aggressive in preventing the burgeoning oligopoliza-
tion of radio, television and print media.

17 But see Martinelli (2006) for a counterargument.
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Appendix

The following result will be used in our analysis of Example 4.5.
The proof is well-known, but it is short, so we include it for
completeness.

Lemma A.1. Fix p ∈ ∆(S). Define Fp : ∆(S) −→ R by Fp(q) :=∑
s∈Sps log[qs].

18 Then argmax(F ) = p.

Proof. Weuse themethod of Lagrangemultipliers. Let 1 ∈ RS be
the constant 1 vector. Note that ∆(S) := {r ∈ RS

+
; 1 • r = 1}.

Thus, if an interior maximum q∗ exists, it must satisfy the first-
order condition that ∇Fp(q∗) = c 1 for some constant c ∈ R.

Now, for all s ∈ S , we have ∂s F (q) = ps/qs. Thus, ∇ Fp(q) =

c 1 if and only if ps = c qs for all s ∈ S. Since p and q are both
probability vectors, this can happen only if c = 1 and p = q.
Thus, the unique critical point of Fp is at p itself.

Finally, observe that Fp is concave (indeed, ∂t∂s Fp = 0 if
s ̸= t , whereas ∂2

s Fp(q) = −ps/q2s < 0, so the Hessian is a
negative diagonalmatrix, hence negative-definite everywhere).
Thus, this critical point is a maximum. □

The next result deals with the unproved assertions in Example 4.5.

Proposition A.2. Let S be finite, let p : S −→ ∆(S) be any error
model, let η > 0, and define F p

log and Pp,η as in Example 4.5.

(a) If p(t|s) > 0 for all t, s ∈ S , and η < min{p(t|s); s, t ∈ S},
then Pp,η satisfies Minimal Determinacy.

(b) Let ϵ > 0, and define C′
ϵ as in Example 4.5. If ϵ and η are small

enough, thenPp,η satisfies Identification with respect to F p
log and

C′
ϵ .

Proof. (a) Let M := min{p(t|s); t, s ∈ S}; then M > 0, because
S is finite, and p(t|s) > 0 for all t, s ∈ S. Let L := |log(M)|. Then
L < ∞, andwe have |vt

s | ≤ L for all s, t ∈ S . Thus,
vt2 ≤ L2 |S|

for all t ∈ S. Thus, var[ρ(t)] ≤ L2 |S| for all t ∈ S. Thus,Minimal
Determinacy is satisfied.
(b) For all s ∈ S , recall that Cϵ

s := {c ∈ C; cs ≥ ct+ϵ for all t ̸= s}.
Suppose p is the error model of a voter. Then for any s, t ∈ S ,
we have ρ(vt |s) = p(t|s). Thus, E[ρ(s)] =

∑
t∈Sp(t|s)v

t
=

(wr (s))r∈S , where, for all r ∈ S , wr (s) =
∑

t∈Sp(t|s)v
t
r =∑

t∈Sp(t|s) log[p(t|r)].
We will first construct some ϵ0 > 0 such that E[ρ(s)] ∈ Cϵ0

s .
To do this, we must show that∑
t∈S

p(t|s) log[p(t|s)] ≥ ϵ0 +

∑
t∈S

p(t|s) log[p(t|r)],

for all r ̸= s. (A1)

Now, for any s ∈ S , define ps by setting pst := p(t|s) for all t ∈ S.
Then LemmaA.1 says that Fps (ps) > Fps (q) for allq ∈ ∆(S)\{ps

}.

18 The function −Fp(q) is sometimes called the cross-entropy of p and q.
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In particular, this implies that Fps (ps) > Fps (pt ) for all t ̸= s. Let
ϵ0 := Fps (ps)−max{Fps (pt ); t ∈ S \{s}}. Then ϵ0 > 0, because S
is finite.We have Fps (ps) ≥ Fps (pt )+ϵ0 for all t ̸= s. This implies
condition (A1).

Now, let 0 < ϵ < ϵ0. If η > 0 is small enough, then by
continuity we will have∑
t∈S

p′(t|s) log[p′(t|s)] ≥ ϵ +

∑
t∈S

p′(t|s) log[p′(t|r)],

for all r ̸= s (A2)

for all error models p′ such that |p′(t|s) − p(t|s)| < η for all
s, t ∈ S. Thus implies that Pp,η satisfies Identification with
respect to F p

log and C′
ϵ . □

Proposition 5.2 is just a special case of Theorem 5.3 when S is a
finite set with the discrete topology. Likewise, Proposition 4.1 is
just a special case of Proposition 4.3 when S is a finite set with the
discrete topology. It remains to prove Theorem 5.3.

Proof of Theorem 5.3 Let F = (V,V, f ) be a mean partition rule.
Let C be the closed convex hull of V , let C′

⊆ C and δ > 0 be as
in (M3), and let f0 be the (uniformly continuous) restriction of f
to Cδ . Fix s ∈ S , and let U ⊂ S be an open set containing s. For
all I ∈ N, let ρ ∈ RI , let VI := (vi)i∈I be a ρ(s)-random profile of
votes (where |I| = I), and let vI :=

1
I

∑
i∈Ivi be their average.

We claim limI→∞Prob[f (vI ) ∈ U] = 1.

Claim 1: Let v̂I := E[vI ]. Then v̂I ∈ f −1
0 {s}.

Proof. E(vI ) = E
( 1
I

∑
i∈Ivi

)
=

1
I

∑
i∈IE (vi). By Identification,

we haveE (vi) ∈ f −1
0 {s} for all i. But f −1

0 {s} is convex by (M4).
The claim follows. ⋄ Claim 1

Claim 2: var(vI ) ≤
1
I σ (I) +

1(I−1)
I κ(I).

Proof. For any i ∈ I, let v̂i := E[vi]. Then as we saw in the
proof of Claim 1, v̂I =

1
I

∑
i∈I v̂i. Thus,

vI − v̂I =
1
I

∑
i∈I

vi −
1
I

∑
i∈I

v̂i =
1
I

∑
i∈I

(vi − v̂i) =
1
I

∑
i∈I

ei,

where, for all i ∈ I, we define ei := vi − v̂i. Thus,vI − v̂I
2 =

⟨
1
I

∑
i∈I

ei,
1
I

∑
j∈I

ej

⟩
=

1
I2
∑
i,j∈I

⟨
ei, ej

⟩
.

Thus, if B is the covariance matrix of ρ(s), then

var(vI ) = E
[
∥vI − v̂I∥2]

=
1
I2
∑
i,j∈I

E
[⟨
ei, ej

⟩]
=

1
I2
∑
i,j∈I

cov(vi, vj)

=
1
I2
∑
i∈I

var(vi) +
1
I2
∑
i,j∈I
i̸=j

cov(vi, vj)

(∗)

1
I
σ (B) +

1(I − 1)
I

κ(B)≤
(†)

1
I
σ (I) +

1(I − 1)
I

κ(I),

as claimed. Here, (∗) is by the defining Eqs. (2), and (†) is by
definition of σ (I) and κ(I). ⋄ Claim 2

Now, f0 is uniformly continuous on Cδ , by (M3). Thus, there
exists η > 0 with the following property:

For all ĉ ∈ f −1
0 {s} and all c ∈ Cδ , if ∥c − ĉ∥ < η,

then f0(c) ∈ U . (A3)

Meanwhile, Claim 1 says that v̂I ∈ f −1
0 {s}; thus, v̂I ∈ C′. Thus, if

c ∈ C, and ∥c − v̂I∥ < δ, then c ∈ Cδ . Let ϵ := min{δ, η}; then
ϵ > 0, and for any c ∈ C, if ∥c − v̂I∥ < ϵ, then property (A3)
implies that f (c) ∈ U . In particular, this holds if c = vI . Thus,

Prob
[
f (vI ) ̸∈ U

]
≤ Prob

[
∥̂vI − vI∥ > ϵ

]
≤
(∗)

var(vI )
ϵ2

≤
(†)

1
ϵ2

(
1
I

σ (I) +
I − 1
I

κ(I)
)

−−−−
(⋄)
I→∞
−→ 0,

as desired. Here (∗) is by the normed vector space version of
Chebyshev’s inequality, and (†) is by Claim 2. Finally, (⋄) is
because Asymptotically Minimal Determinacy says that 1

I σ (I) −

−−−I→∞
−→ 0, while Asymptotically Weak Average Covariance says that

κ(I) −−−−I→∞
−→ 0. □

Remark A.3. Fix s ∈ S , and write ρs for ρ(s). We have defined
E[ρ(s)] to be the expected value of a ρs-random variable. Formally,
this is the following V-valued integral:

E[ρ(s)] :=

∫
V
v dρs[v]. (A4)

IfV is a finite-dimensional vector space, then the integral in (A4) is
defined in the standard way, by simply computing the Lebesgue
integral of each coordinate. More generally, when V is possibly
infinite-dimensional, we interpret (A4) as the Bochner integral of
the identity function I : V −→ V with respect to the measure
ρs. (This agrees with the coordinatewise Lebesgue integral when
V is finite-dimensional.) To be precise, suppose ρs is defined on
a sigma-algebra B of subsets of V. A B-measurable function f :

V −→ V is B- simple if it takes only finitely many values. If f
takes the values v1, v2, . . . vN on theB-measurable setsB1, . . . ,BN
respectively, then we define∫

V
f dρs :=

N∑
n=1

ρs[Bn] vn. (A5)

Now let {fn}∞n=1 be a sequence of B-simple functions from V to
itself, such that

lim
n→∞

fn(v) = v for ρs-almost all v ∈ V, (A6)

and

lim
n→∞

∫
V

∥I − fn∥ dρs = 0. (A7)

Then the Bochner integral is defined as the limit∫
V
v dρs[v] := lim

n→∞

∫
V
fn dρs, (A8)

where each of the integrals on the right hand side of (A8) is defined
as in (A5). If the limit (A8) exists, then it is independent of the
particular sequence of simple functions we use to approximate
the identity function (Aliprantis and Border, 2006 Lemma 11.41,
p.425).

Thus, for the expected value (A4) to be well-defined as a
Bochner integral, two conditions must be satisfied. First, we need
a sequence {fn}∞n=1 of B-simple functions satisfying convergence
conditions (A6) and (A7). Second, we need the limit (A8) to exist.

There is a sequence {fn}∞n=1 satisfying (A6) if and only there is a
separable closed subspace V0 of V such that ρ[V0] = 1 (Aliprantis
and Border, 2006 Lemma 11.37). (Clearly, this holds if V itself is
separable.) Suppose B is the Borel sigma-algebra induced by the
norm topology on V. Then we can obtain a sequence that also
satisfies (A7) if, for any ϵ > 0, there is some compact subset
K ⊂ V0 such that

∫
K∁ ∥v∥ dρs[v] < ϵ. (This is easy to verify.)

In particular, this holds if ρs is ‘‘almost-compactly supported’’,
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Fig. 9. The proof of Proposition 5.4. (In this example, S = {r, s, t} and V = R2 .)

meaning that there is a norm-bounded subsetB ⊂ V0 withρs[B] =

1, and for any ϵ > 0, there is some compact subsetK ⊆ B such that
ρs[K] > 1 − ϵ. Finally, the limit (A8) is guaranteed to exist if V is
a Hilbert space — i.e. the inner product metric is Cauchy-complete
(Aliprantis andBorder, 2006 Lemma11.41). But the limit (A8) could
exist even when V is not a Hilbert space. For example, suppose ρs
is a finite sum of point masses. Let f be a simple function such that
f (v) = v for all v where ρs has a point mass. If we define fn := f
for all n ∈ N, then the sequence {fn}∞n=1 trivially satisfies (A6) and
(A7), and the limit (A8) trivially exists. A Hilbert space structure is
not required for any of our main results. So we have not assumed
that V is a Hilbert space in condition (M1).

Proof of Proposition 5.4. Let V be a vector space with inner
product ⟨_, _⟩, and suppose that ℜ is an identifiable culture on
V. For all s ∈ S and j ∈ I, let Vs,j ⊆ V be a subset such that, if
(vi)i∈I is a ρ(s)-random profile, then Prob[vj ∈ Vs,j] = 1. Then
let

V :=

⋃
s∈S

⋃
i∈I

Vi,s.

Let C be the closed, convex hull of V . Let {Ks}s∈S be the compact,
convex subsets of V in the definition of identifiability. Without
loss of generality, we can suppose that these are subsets of C
(otherwise, replace each Ks with Ks ∩ C, which is also compact
and convex.)

For any distinct r, s ∈ S , let ϵr,s be the minimum distance
between Kr and Ks; then ϵr,s > 0 because Kr and Ks are
compact and disjoint. Let

ϵ :=
1
4

min
r,s∈S
r ̸=s

ϵr,s.

Then ϵ > 0 because S is finite. For any distinct r, s ∈ S , the
convex sets Ks and Kr are disjoint, so there is a hyperplaneHr,s
which passes between them. Furthermore, we can arrange for
this hyperplane to have distance ϵr,s/2 from each of Kr and Ks,
as shown in Fig. 9. For any s ∈ S , let As ⊆ V be the closed,
convex set supported by all the hyperplanes {Hr,s; r ∈ S \ {s}}.
(Thus, Ar ∩ As ⊆ Hr,s, for any distinct r, s ∈ S.) These convex
sets may not cover all of V. (For example, the small central
triangle in Fig. 9 is not covered by any As.) So we construct
the sets Bs (for all s ∈ S) by attaching any uncovered part of
V to As, for some arbitrary s ∈ S , so that V =

⋃
s∈SBs. Let

C′
s := {c ∈ C; d(v,Ks) < ϵ}, as shown in Fig. 9; then C′

s is
contained in the interior of As, and thus, in the interior of Bs.

Suppose S = {s1, s2, . . . , sN}. For all n ∈ [1 . . .N], define
B∗
sn := Bsn \ (Bs1 ∪· · ·∪Bsn−1 ). Thus, the sets B

∗
s1 , . . . ,B

∗
sN form a

partition of V. Thus, if we define Cs := B∗
s ∩ C for all s ∈ S , then

the sets Cs1 , . . . , CsN form a partition of C. For each s ∈ S , C′
s is

in the interior of B∗
s , by construction; thus, C′

s is in the interior
of Cs. Indeed, every point of C′

s is at least ϵ-distant fromHr,s (for
all r ∈ S), and thus, is at least ϵ-distant from the boundary of
Cs. Now define the function f : C −→ S by setting f (c) := s for
all c ∈ Cs, for all s ∈ S. Then let F := (V,V, f ). To see that F is
a mean partition rule, let C′

:=
⋃

s∈SC
′
s and let δ := ϵ/2. Then

C′ and δ satisfy Property (M3) and (M4) (because C′
∩ Cs = C′

s
for all s ∈ S). Finally, by construction, F satisfies the axiom
Identificationwith respect to ℜ. □

Proof of Proposition 6.5. Let β : N −→ R+ and γ : N −→

[0, ∞] be functions satisfying the inequality (9), such that B
exhibits β- covariance decay relative toN, andN has sublinear
average γ -degree growth. Let I ∈ N, let B ∈ BI , and let (I, ∼)
be a graph in NI such that BI exhibits β-decay for (I, ∼). Let
M := β(0); thenMinimal Determinacy is automatically satisfied,
because |bi,i| ≤ β(0) for all i ∈ I. It remains to prove Asymptot-
ically weak average covariance. Let C :=

∑
∞

n=1γ (n)β(n); then C
is finite by inequality (9). We have:

κ(B) =
1

I(I − 1)

I∑
i,j∈I
i̸=j

bi,j =
1

I(I − 1)

∑
i∈I

∞∑
r=1

∑
j∈I

d(i,j)=r

bi,j

≤
(a)

1
I(I − 1)

∑
i∈I

∞∑
r=1

∑
j∈I

d(i,j)=r

β(r)

=
1

I(I − 1)

∑
i∈I

∞∑
r=1

β(r) degr (i, ∼)

≤
(b)

1
I(I − 1)

∑
i∈I

∞∑
r=1

β(r) γ (r) degγ (i, ∼)

=
1

I(I − 1)

∑
i∈I

degγ (i, ∼)

(
∞∑
r=1

β(r) γ (r)

)

(c)

1
I(I − 1)

∑
i∈I

degγ (i, ∼) · C

(d)

C
(I − 1)

avedegγ (I, ∼)≤
(e)

C
(I − 1)

avedeg
γ
(NI ).

Here, inequality (a) is because B exhibits β-decay for (I, ∼),
while inequality (b) is by defining formula (4). Equality (c) is
by definition of C , and equality (d) is by defining formula (5).
Inequality (e) is by defining formula (6).

This inequality holds for all matrices B ∈ BI . It follows that

κ(I) ≤
C

(I − 1)
avedeg

γ
(NI ) −−−−I→∞

−→ 0,

as desired, where the last step is by the limit equation (7). □

Proof of Proposition 7.1. Let ℜ
′
:= D ⊙ ℜ. We must verify the

three conditions for ℜ
′ to be sagacious. First, we will show that

ℜ
′ satisfies Identification. Suppose the true state of nature is s.

Fix I ∈ N, and let I := [1 . . . I]. Let R′

I = DI ⊙ RI , let ρ ′
∈ R′

I ,
and let V′

= (v′

i)
I
i=1 be a ρ ′(s)-random profile. Then there exists

a collective behaviour model ρ ∈ RI , and an influence matrix
D ∈ DI such that ρ ′

= D ⊙ ρ. Suppose D = [di,j]i,j∈I . Thus, for
all i ∈ I, we have

v′

i :=

I∑
j=1

di,j vj,
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whereV = (vi)Ii=1 is aρ(s)-randomprofile. Now,RI is sagacious,
so it satisfies Identification; thus, for all k ∈ I, we have E[vk] ∈

F−1
{s} ∩ C′. Thus, for all i ∈ I, we have

E[v′

i] = E

[∑
k∈I

di,k vk

]
=

∑
k∈I

di,k E[vk] ∈ F−1
{s} ∩ C′,

because F−1
{s} ∩ C′ is convex by (M4), and

∑
k∈Idi,k = 1 (be-

cause D is a stochastic matrix). Thus, Identification is satisfied.
It remains to show that ℜ

′ satisfies Asymptotically weak average
covariance and Asymptotic Determinacy. Since the culture ℜ is
sagacious, it already satisfies these properties. For all I ∈ N, let
σ (I) and κ(I) be as defined in the statements of these conditions.
Let s ∈ S , D ∈ DI , ρ ∈ RI , ρ ′

= D ⊙ ρ, V′, V, etc. be as
defined in the proof of Identification above. Let B′

= [b′

i,j]
I
i,j=1

be the covariance matrix of ρ ′(s). That is: b′

i,j := cov(v′

i, v
′

j), for
all i, j ∈ I. Let D be the modulus ofD (this is finite becauseD is
local).

Claim 1: 1
I2
∑

i,j∈Ib
′

i,j ≤ D2
( 1
I σ (I) +

I−1
I κ(I)

)
.

Proof. Let B = [bi,j]Ii,j=1 be the covariancematrix of ρ(s). Then
for all i, j ∈ I, we have

b′

i,j = cov(v′

i, v
′

j) = cov

(∑
k∈I

di,k vk,
∑
ℓ∈I

dj,ℓ vℓ

)
=

∑
k∈I

∑
ℓ∈I

di,k dj,ℓ cov(vk, vℓ) =

∑
k,ℓ∈I

di,k dj,ℓ bk,ℓ, (A9)

where the last step is because cov(vk, vℓ) = bk,ℓ. For all
k ∈ I, let dk :=

∑
i∈Idi,k. Then

1
I2
∑
i,j∈I

b′

i,j (a)

1
I2

∑
i,j,k,ℓ∈I

di,k dj,ℓ bk,ℓ

=
1
I2
∑
k,ℓ∈I

(∑
i∈I

di,k

)⎛⎝∑
j∈I

dj,ℓ

⎞⎠ bk,ℓ

=
1
I2
∑
k,ℓ∈I

dk dℓ bk,ℓ ≤
(b)

1
I2
∑
k,ℓ∈I

D2 bk,ℓ

= D2

⎛⎜⎝ 1
I2
∑
k∈I

bk,ℓ +
1
I2
∑
k,ℓ∈I
k̸=ℓ

bk,ℓ

⎞⎟⎠
= D2

(
1
I
σ (B) +

I − 1
I

κ(B)
)

≤
(c)

D2
(
1
I
σ (I) +

I − 1
I

κ(I)
)

as claimed. Here, (a) is by Eq. (A9), while (b) is by defi-
nition of ‘‘modulus’’. (c) is by the definitions of σ (I) and
κ(I). ⋄ Claim 1

Now, letB′
= (B′

I )
∞

I=1 be the covariance structure for the culture
ℜ

′. Then for any I ∈ N and B′
∈ B′

I , we can find some ρ ′
∈ R′

I
and s ∈ S such that B′

= cov[ρ ′(s)], and thus, Claim 1 applies
to B′. However,
1
I2
∑
i,j∈I

b′

i,j =
I − 1
I

κ(B′) +
1
I
σ (B′).

Thus, Claim 1 implies that

I − 1
I

κ(I) +
1
I
σ (I) ≤ D2

(
1
I
σ (I) +

I − 1
I

κ(I)
)

−−−−I→∞
−→ 0,

where the last step because ℜ satisfies Asymptotically weak av-
erage covariance and Asymptotic Determinacy. Thus, the culture
ℜ

′ is sagacious. □

Proof of Proposition 7.2. Let I := [1 . . . I]. For any I × I matrix
D, let ∥D∥ := maxj∈I

(∑
i∈Idi,j

)
. Thus, a deliberative institution

C = (CI )∞I=1 is local if there is some constant C > 0 such that
∥C∥ ≤ C for all C ∈ CI and all I ∈ N. In particular, ifD and E are
local, then there are constants D and E such that ∥D∥ ≤ D and
∥E∥ ≤ E for all D ∈ DI , all E ∈ EI , and all I ∈ N.

Claim 1: For any I × I matrices D and E, we have ∥D · E∥ ≤

∥D∥ · ∥E∥.

Proof. Let C = D · E. Thus, for all i, k ∈ I, ci,k =
∑

j∈Idi,j ej,k.
Thus, for all k ∈ I, we have∑
i∈I

ci,k =

∑
i∈I

∑
j∈I

di,j ej,k =

∑
j∈I

(∑
i∈I

di,j

)
ej,k

≤

∑
j∈I

∥D∥ ej,k = ∥D∥

∑
j∈I

ej,k ≤ ∥D∥ · ∥E∥ .

Thus, ∥D · E∥ ≤ ∥D∥ · ∥E∥, as claimed. ⋄ Claim 1

Let CI := {D · E; D ∈ DI and E ∈ EI}. It is well-known that
the product of two stochastic matrices is a stochastic matrix.
(The proof is very similar to Claim 1.) Thus, every element of CI
is a stochastic matrix. Meanwhile, it follows from Claim 1 that
∥C∥ ≤ D E for all C ∈ CI and all I ∈ N. Thus,D · E is also local.

Now let q, q′
∈ [0, 1] such that q + q′

= 1.

Claim 2: For any I × I matrices D and E,we have
qD + q′E

 ≤

q ∥D∥ + q′ ∥E∥.

Proof. Let C = qD+q′E. Thus, for all i, j ∈ I, ci,j = q di,j+q′ ei,j.
Thus, for all j ∈ I, we have∑
i∈I

ci,j =

∑
i∈I

(q di,j + q′ ei,j)

= q
∑
i∈I

di,j + q′
∑
i∈I

ei,j ≤ q ∥D∥ + q′
∥E∥ .

Thus,
qD + q′E

 ≤ q ∥D∥ + q′ ∥E∥, as claimed. ⋄ Claim 2

Let CI := {qD + q′ E; D ∈ DI and E ∈ EI}. It is well-known
that the convex combination of two stochastic matrices is a
stochastic matrix. (The proof is very similar to Claim 2.) Thus,
every element of CI is a stochastic matrix. Meanwhile, it follows
from Claim 2 that ∥C∥ ≤ q D + q′ E for all C ∈ CI and all I ∈ N.
Thus, qD + q′E is also local. □
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