What's the Science ? Communication under Model uncertainty

Philippe Colo $^{\rm 1}$

November 2018

¹Financial support through ANR CHOp (ANR-17-€E26-0003) < => = ∽ < c 1/26

Scientific knowledge

- Scientific knowledge is a collection of representations of reality, **models**. Each of them offers different **explanations** to what we observe from the sensitive world.
- There is **no** such thing as a unique, permanent, **true** representation of reality.
 - $\rightarrow\,$ When the depository of Scientific authority speaks about scientific knowledge, he **cannot prove** what he claims.
 - $\rightarrow\,$ Communication over Science belongs to the realm of $\,$ non-certifiable communication
- In that context, the **sender** is only assumed to have **more educated** perception of the existing models.

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Model uncertainty

- Models can be seen as **stochastic** predictors of the **outcome** of given actions.
- Formally, they are **probability measures** over possible states of the world.
- \bullet When there is uncertainty over which one is the best one \rightarrow model uncertainty.

Scientific communication

- I study a game of communication under model uncertainty, where there is an asymmetry of **interests**, and communication is **cost-less**.
 - \rightarrow Cheap-Talk
- The game is similar to the canonical one of [Crawford and Sobel, 1982] except that messages are over models (probability measures) and not states of world.
- As a result, receivers may be **ambiguity sensitive** regarding models. I will assume they hold smooth ambiguity preferences : KMM [Klibanoff et al., 2005].

Applications

There are many situation where there is an **asymmetry of interests** between the scientific authority and those who **act** in function of its recommendation :

- Company selling a **new technology** relying on a scientific theory (e.g. Long run effects of GMO)
- Health authority recommending a public behaviour (e.g. vaccination / contribution to a public good).
- IPCC predictions on **climate damages** to green house gas (GHG) emitters / contribution to a public bad.

Main results

- All equilibrium are partition equilibrium : sender credibly points out a set of model.
- When ambiguity aversion grows, it is harder (in terms of bias) to get a non-babbling equilibrium (saying something credible).
- When receivers are MEU [Gilboa and Schmeidler, 1989] all equilibria can be ranked by informativness and the sender is better off playing the most informative.

Interpretation :

- \rightarrow When it comes to models, assuming ambiguity aversion, it is **much** harder to keep credibility if there is a bias.
- → Yet, a credible sender can convey **much more information** than while talking about states (under MEU).

Related work

- Ambiguity in cheap talk over states of the world with ambiguity averse preferences has been introduced by [Kellner and Le Quement, 2017]. This change is to the advantage of the sender.
- [Kellner and Le Quement, 2018] further allows to **Ellsbergian** communication strategies, strengthening this result.
- Cheap talk over states of the world with multiple receivers have been studied by [Goltsman and Pavlov, 2008]. To my knowledge, no work on cheap talk prior to a game of contribution to a public good/bad.

Timing

- **1** Nature selects the type of the sender, which is privately informed.
- 2 The sender sends a message to the receivers regarding its type.
- The receivers chooses an action.

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Receiver

- One receiver
- Actions: $s \in S = [0, 1]$ the action space of the receiver.
- $\Omega = \{H, L\}$
- d: S × Ω → ℝ⁺, increasing and strictly convex in the first argument. ∀s ∈ S; d(s, L) ≤ d(s, H)
- Pay-off functions : $u(s) = s d(s, \omega)$

Decision making

- Probability distributions are Bernoulli of parameter $\theta \in T = [\underline{\theta}, \overline{\theta}] \subset (0, 1)$ the set of types of the sender.
- \mathcal{B} the set of all closed intervals of $[\underline{\theta}, \overline{\theta}]$, and $B \in \mathcal{B}$ the beliefs of the receiver.
- In situation of **ambiguity**, I assume the receiver to evaluate action *s* by:

$$V_B(s) = \int_{ heta \in [heta,\overline{ heta}]} \mu(heta) \phi(s - \mathbb{E}_ heta(d(s,\omega))) d heta)$$

• $\mu \in \Delta([\underline{\theta}, \overline{\theta}])$ the second order **common prior** of both sender and receiver, $\phi : \mathbb{R} \to \mathbb{R}$ characterises attitude toward ambiguity.

Receiver's Equilibrium

When the set of beliefs of the receiver is B, he chooses s^* such that for all $s \in S$:

 $V_B(s^*) \geq V_B(s)$

 $G: [\underline{\theta}, \overline{\theta}] \to T$ be the mapping that gives the **equilibrium action** of the receiver given his beliefs.

$$\mathsf{G}(\mathsf{B}) = {\it argmax}_{s \in \mathcal{S}} \int_{ heta \in \mathsf{B}} \mu(heta) \phi(s - \mathbb{E}_{ heta}(d(s), \omega)) d heta)$$

 \rightarrow concavity implies that G(B) always exists and is unique.

Sender

The utility of the sender given ω and action s is :

$$U_0(s,\omega) = s - d_0(s,\omega) \tag{1}$$

where $d_0: S \times \Omega \to \mathbb{R}^+$, increasing and strictly convex in the first argument. $\forall s \in S; d_0(s, L) \leq d_0(s, H)$

- *M* the set of **messages** of the sender.
- A strategy for the sender is $\sigma : [\underline{\theta}, \overline{\theta}] \to M$ which consists in transmitting a message $m \in M$ to the receivers regarding its type
- $\bullet~\mbox{Call}~\Sigma$ the set of the sender's strategy

Updating

Having received message m, receiver **updates** his prior using Bayes' rule such that :

$$\mu(heta|m) = rac{\mu(heta)q(m| heta)}{\int_{ heta\in[heta,\overline{ heta}]}q(m| heta)\mu(heta)d heta}$$

where $q(m|\theta)$ is the signalling rule for the sender. Call $B(m) = supp(\mu(\cdot|m))$, the updated belief of the receivers having received *m*. Receiver *i* then evaluates its strategies by

$$V_{B(m)}(s) = \int_{ heta \in \mathcal{C}} \mu(heta | m) \phi(s - \mathbb{E}_{ heta}(d(s, \omega))) d heta)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

4 ロ ト 4 日 ト 4 王 ト 王 9 4 14/26

Sender's Equilibrium

- σ⁻¹(m) ∈ [θ, θ], for m ∈ supp(σ), be the set of potential types of the sender, in the eyes of the receivers, having received message m
- Having learned its type θ_0 , the sender evaluates strategy σ by:

$$V_{\theta_0}(\sigma(\theta_0)) = G(\sigma^{-1}(m)) - \mathbb{E}_{\theta_0}(d_0(G(\sigma^{-1}(m), \omega)))$$

• At equilibrium, the sender chooses σ^* such that for all $\sigma \in \Sigma$:

$$V_{\theta_0}(\sigma^*(\theta_0)) \geq V_{\theta_0}(\sigma(\theta_0))$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bias

I further define $s_0(\theta_0) = \operatorname{argmax}_{s \in S} \mathbb{E}_{\theta_0}(U_0(s))$ the **optimal action** in the eyes of the sender. In the following I will assume that $\forall \theta \in T$:

$${\it G}(heta) < {\it s}_0(heta)$$
 or ${\it G}(heta) > {\it s}_0(heta)$

i.e. the sender and the receiver are always biased in the same direction.

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ ♪ ○ ○ 16/26

Partition equilibrium

Definition

A partition equilibrium is a partition of the set of types : $\cup_k C_k = [\underline{\theta}, \overline{\theta}]$ such that the equilibrium strategy of the sender is $\sigma^*(C_k) = m_k$ and the receiver's action is $G(\theta(m_k))$

Proposition

Any equilibrium of the game is a partition equilibrium.

 \rightarrow Proof similar to [Crawford and Sobel, 1982]

Comparative statics

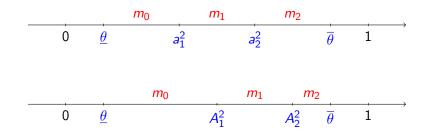
Proposition

Let $\underline{\theta} < a_1^q < ... < a_q^q < \overline{\theta}$ be the cutoff types of the equilibrium with q cutoffs for receivers with given ambiguity aversion and $\underline{\theta} < A_1^q < ... < A_q^q < \overline{\theta}$ be the cutoff types of the equilibrium with q cutoffs for the same receivers with increased ambiguity aversion. Then we have that for all $k \leq q$:

$$A_k^q > a_k^q$$

- In particular the existence of non-babbling equilibrium (q = 1) in the most ambiguity averse case.
 - ightarrow Harder (in terms of bias) to be credible under ambiguity aversion.
- Only within q cutoff types comparison.

Comparing equilibria



< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 ∽ Q (19/26

Non-babbling under MEU Equilibria

Assume ϕ is such that $-\frac{\phi''}{\phi'} \to +\infty$. Then the receiver behaves as if he had MEU preferences with belief B(m).

Proposition

When $\forall \theta \in T$, $G(\theta) < s_0(\theta)$ the only equilibrium is the babbling equilibrium (type independent message, message independent action).

In the following I will assume that $\forall \theta \in T$, $G(\theta) > s_0(\theta)$

4 ロ ト 4 日 ト 4 王 ト 王 9 4 C 20/26

MEU Equilibria

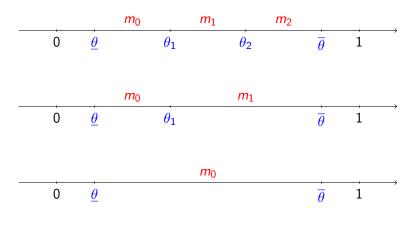
Proposition

There exists $\theta_1 < ... < \theta_N \in (\underline{\theta}, \overline{\theta})$ such that the set of all equilibrium of the game is $\{(\sigma_q^*, G([\theta_k, \theta_{k+1}))) | \sigma_q^*([\theta_k, \theta_{k+1})) = m_k \text{ for } 0 \le k \le q\}_{0 \le q \le N}$

- There are several equilibrium characterised by their number of cut-off types.
- In all equilibrium, the the k-th cut-off type is the same.

Representation of equilibria

A direct consequence is that all equilibrium of the game can be **ranked** by informativeness, which will not be true for any ϕ .



<ロ > < 母 > < 臣 > < 臣 > 三 の Q C 21/26

Selection of equilibria

A direct corollary can be established regarding ex-ante equilibrium selection by the sender.

Corollary

- The sender is always ex-ante weakly better off by playing the most informative equilibrium strategy ∀q ≥ 0 :
 V_{θ0}(σ^{*}_N(θ₀)) ≥ V_{θ0}(σ^{*}_q(θ₀))
- When the sender's type is not in [θ₁, θ₂), it is ex-ante strictly better off playing the most informative equilibrium strategy.

IPCC and Climate Agreements

- An interesting special case is when multiple receivers will play a game of **contribution to a public bad** (CPB) accordingly to the scientific announcement.
 - $\rightarrow\,$ Communication over climate damages by the IPCC report before international climate agreements.
- Then, the overall level of GHG emitted will be inefficient.
- The sender could be seen as trying to act as a social planner, internalising all countries damages.
 - $\rightarrow\,$ Sender is systematically downwards biased towards the total level of emission of the senders.

4 ロ ト 4 日 ト 4 王 ト 王 9 4 C 24/26

Receivers

- Two receivers
- Actions: $s_i \in S = [0, 1]$ the normalised level of emission of receiver *i*. E = [0, 2] total emissions.
- $u_1(s_1, s_2) = -(s_1 + s_2 \omega)^2$
- $u_2(s_2, s_1) = -(s_1 + s_2 \omega b)^2$, with b > 0
- An equilibrium in the receivers game is defined similarly to a Nash equilibrium using the receivers value function V_B^i .

Sender

The sender cares only of maximising total welfare. The utility of the sender given ω and total emission *e* is :

$$U_0(e) = -(e-\omega)^2 - (e-\omega-b)^2$$

Having learned its type θ_0 , the sender evaluates strategy σ by:

$$V_{\theta_0}(\sigma(\theta_0)) = \mathbb{E}_{\theta_0}(U_0(\sigma^{-1}(m)))$$

At equilibrium, the sender chooses σ^* such that for all $\sigma \in \Sigma$:

$$V_{\theta_0}(\sigma^*(\theta_0)) \ge V_{\theta_0}(\sigma(\theta_0))$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 ∽ Q (25/26

Credible communication

Assume receivers evaluate strategies by $min_{\theta \in B} \mathbb{E}_{\theta}(u_i(s_i, s_{-i}))$. A non-babbling equilibrium exists if and only if :

$$b \leq rac{2(1- heta)}{3}$$

Yet, when receivers are ambiguity neutral and have a uniform prior, a non-babbling equilibrium **exists** if and only if :

$$b \leq 3$$

- In a game of contribution to a public bad, the sender is credible if and only if contributor's valuation is **close enough**.
- The non-babbling equilibrium is **less likely to exist** when receivers are MEU.

Introd	uction
00000	0

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 ク 4 で 26/26