Decision Under Normative Uncertainty

Franz Dietrich Brian Jabarian PSE & CES & CNRS U. Paris 1 & PSE

Second Workshop on Coping With Heterogeneous Opinions

Paris School of Economics

29 November 2018

Empirical vs. normative uncertainty

- Classical empirical uncertainty: uncertainty about empirical facts.
 - Ex: Does a medical treatment cure the patient? What are the side effects?
- Normative uncertainty: uncertainty about value facts.
 - Ex: Is curing the patient worth the side effects? How much does the patient's will count? What is the correct inequality aversion?
 - More generally: What is the correct normative theory? (Is it utilitarianism, some egalitarianism, some prioritarianism, some deontology, ...?)

Should we close down nuclear plants?

Two dimensions of this debate:

- *empirical uncertainty*: Will there be earth quakes? human errors? technological progress? etc.
- normative uncertainty: How evaluate burdens for future generations? What is the correct intergenerational discounting factor? How trade off between quality of life and probability of death in accidents? etc.

Goal: incorporate normative uncertainty into decision models

Why important?

Understanding both sides of (social and internal) deliberation

'Value' could stand for...

- individual well-being,
- social welfare,
- moral value,
- legal value,
- artistic value,
- ...

Conceptualizing normative uncertainty within Savage's framework

Coming from Savage's decision theory, one might think of

- empirical uncertainty as uncertainty about the nature state (interpreted as the empirical state of the world)
- normative uncertainty as uncertainty about the value/utility of consequences.

Classical EU-agents have only empirical uncertainty: they do not know the state, but know ('have') exact utilities of consequences.

Note our cognitive re-interpretation of 'utility'

Figure 1: In 2 steps in normative uncertainty

From a Humean belief/desire model to a cognitivist model

Normative uncertainty: philosophically meaningful?

- Normative uncertainty presupposes (beliefs about) normative facts.
- 'Normative facts'?? Don't worry: these facts can be objective or subjective, universal or relative, ...
 I'll spare you with philosophical debates around 'facts'.

Normative uncertainty:

formally different?

- A legitimate question! (Which I had too, 1 year ago.)
- Modelling normative uncertainty as ordinary choice-theoretic uncertainty fails.
- So: normative uncertainty differs not just interpretively, but also formally.

Philosophers have started formal work on normative uncertainty

- MacAskill (2014, 2016), Greaves & Ord (2018), Lockhart (2000), Ross (2006), Sepielli (2009), Barry & Tomlin (2016)
- Some points of focus:
 - cardinal vs ordinal value
 - comparable vs non-comparable value
 - individual vs collective choice
 - consequentialist vs non-consequentialist evaluations

The Question

How evaluate options under normative uncertainty?
–> What's the 'meta-value' under uncertainty about '1st-order value'?

Plan

- 1. The classical 'expected-value theory'
- 2. An alternative 'impartial value theory'

Options and Valuations

Consider:

- a set A of 'options', the objects of evaluation
 - choice options, policy measures, social arrangements, income distributions, ...
 - (For now we set aside empirical uncertainty. But in principle options could contain empirical uncertainty.)

Valuations

- a finite set V of 'valuations' v, assigning to each option a ∈ A its value v(a) in ℝ.
 - They might represent rival normative theories, normative intuitions, value judgments, 'social preferences', ...
 - \mathcal{V} might consist of:
 - \ast a utilitarian and a Rawlsian valuation, or
 - * 'similar' valuations differing in a parameter, e.g., in a discounting factor, or inequality-aversion degree, or prioritarian degree, ...

Value versus vNM utility

Beliefs about value

Consider further:

• a probability function Pr assigning to each valuation v in \mathcal{V} its subjective correctness probability $Pr(v) \geq 0$, where $\sum_{v \in \mathcal{V}} Pr(v) = 1$.

Meta-theories

- What is the *overall* value of each option, given one's normative uncertainty?
- An answer is a *'meta-'valuation*, assigning to each option in *A* its 'overall' value.
- Prominent proposal: the **expected-value theory** 'EV' which valuates each option $a \in A$ by its expected value:

$$EV(a) = \sum_{v \in \mathcal{V}} Pr(v)v(a).$$

EV is neutral to normative risk

Neutrality to normative risk is implausible if aversion to empirical risk is certainly correct

What does it mean that aversion to empirical risk is certainly correct?

- Assume options in A contain empirical uncertainty. say they are vNM lotteries on a set X of 'outcomes'.
- The value of an outcome x in X is the value of the sure lottery in A which yields x.
- The risk attitude of a valuation v ∈ V is given by how v(a) compares to the expected outcome-value ∑_{x∈X} a(x)v(x).
- Risk-aversion is certainty correct if v(a) < ∑x∈X a(x)v(x) for all non-sure lotteries a and all v ∈ V s.t. Pr(v) ≠ 0.

The attitude of *EV* to empirical risk is *impartial*: it is guided by the risk-attitudinal beliefs

- EV is neutral (averse, prone) to *empirical* risk if all $v \in \mathcal{V}$ of non-zero correctness probability Pr(v) are risk-neutral (-averse, -prone). Formally, EV evaluates options without normative risk at (below, above) the option's expected outcome value if each $v \in \mathcal{V}$ s.t. $Pr(v) \neq 0$ does so.
- 'Impartiality' of risk attotides can be defined precisely.

In the paper we define 3 alternatives to EV, with different risk attitudes

	neutral to nor. risk	impartial to nor. risk
neutral to emp. risk	'fully expectational value'	'dual expected value'
impartial to emp. risk	'expected value'	'impartial value'

Our favourite: the impartial value theory.

How is it defined?

Value prospects

- A value prospect is a lottery over value levels in \mathbb{R} .
- Each option a ∈ A generates two types of value prospect, depending on whether we consider just empirical or also normative uncertainty:
 - *a*'s value prospect under $v \in \mathcal{V}$ is denoted $p_{a,v}$ and given by:

$$p_{a,v}(k) = \text{prob. of an outcome of value } k \text{ under } v$$

= $\sum_{x \in X: v(x)=k} a(x).$

- *a*'s value prospect simpliciter is denoted p_a and given by:

$$p_a(k) = \text{ prob. of an outcome of value } k$$

 $= \sum_{(v,x) \in \mathcal{V} imes X: v(x) = k} \underbrace{Pr(v)a(x)}_{\text{prob. of }(v,x)}.$

Impartial Value defined

• Each valuation v in V can be taken to evaluate not just options a, but also value prospects p:¹

v(p) = value v(a) of options a with value prospect $p_{a,v} = p$.

• The **impartial theory** 'IV' evaluates each option $a \in A$ by the expected evaluation of its value prospect:

$$IV(a) = \sum_{v \in \mathcal{V}} Pr(v)v(p_a).$$

¹This definition presupposes a technical assumption: for each valuation v in \mathcal{V} and value prospect p, let there exist a corresponding option a in A whose value prospect $p_{a,v}$ is p, and moreover let any two such options a in A have same value v(a).

IV versus *EV*

- Assume that being risk-averse is certainly correct, i.e., only risk-averse theories in ${\cal V}$ have positive probability.
- The expected value EV(a) = ∑_{v∈V} Pr(v)v(a) contains a risk premium for empirical risk, because each 'v(a)' contains a premium for the (empirical) risk in a.
- The impartial value IV(a) = ∑_{v∈V} Pr(v)v(p_a) contains a risk premium for *empirical and normative* risk, because each 'v(p_a)' contains a premium for the (*empirical and normative*) risk in p_a.

Ex-ante vs. ex-post approach

- Famous question in ethics and aggregation theory: should competing evaluations of uncertain prospects be aggregated before or after resolution of uncertainty? (See, e.g., Fleurbaey 2010, Fleurbaey and Zuber 2017.)
- We have two types of uncertainty, so four approaches:

	normatively ex-post	normatively ex-ante
empirically ex-post	fully expectational value	dual expected value
empirically ex-ante	expected value	impartial value

Why do we base *IV* on an expectation?

- Is IV not risk-neutral through the back door, through taking the expectation of the v(p_a) (v ∈ V)?
- No, because each v(p_a) (v ∈ V) already contains a premium for all the risk in the option a, empirical and normative. Defining IV(a) as a value below that expectation would amount to a 'double risk premium'.