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A consumption event is memorable if its memory affects an agent’s well-being
at times after the material consumption. We develop an axiomatic model of mem-
orable consumption in a dynamic setting. The representation takes the form of
exponential discounting, and features additional terms that accumulate utility
from the recollection of past consumption. We analyze alternative processes by
which the memorable effect accrues over time and show that our model sup-
ports well-known phenomena in psychology, such as the peak-end rule, duration
neglect, and adaptation trends. We study a prominent special case in which mem-
ory evolves according to a Markovian law and develop comparative statics with
respect to strength and longevity of memory. As an application, we introduce
memorable consumption into the standard linear-quadratic consumption-savings
problem and examine its implications for life-cycle patterns.

1 Introduction

In psychology and behavioral science, it has been widely recognized that one’s subjective

well-being at any point in time is not simply determined by the consumption at that

moment — a crucial role is played by the recollection of past experiences. This idea is

supported by sizable evidence from different types of experiments.1 Evoking early ideas

of Bentham (1789) and Edgeworth (1881), Kahneman’s well-known contributions propose

a distinction between ‘moment utility’ and ‘remembered utility:’ In his view, a hedonic

experience consists of a sequence of moments for which one can instantly measure the

degree of pain or pleasure, that is, the moment utility; the ex post judgement of the overall

experience gives rise to the remembered utility. When viewed through the lens of modern
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knowledge the financial support of the Investissements d’Avenir program (ANR-11-IDEX-0003/Labex
Ecodec/ANR-11-LABX-0047).
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1Among many, see Varey and Kahneman (1992), Kahneman, Diener, and Schwarz (1999), and Kahneman

(2000a, 2000b). Here we refer to the strand of the literature that is closest to behavioral economics. For
earlier references, see, e.g., Elster and Loewenstein (1992) and Diener, Suh, Lucas, and Smith (1999). The
idea that past memories may influence well-being goes back to, at least, Smith (1759).
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economics, one problematic aspect of this approach is that its core concepts are not linked

to choice behavior. By contrary, moment and remembered “utilities” reflect hedonic states,

such as the perceived intensity of pain or pleasure, and their measurements are traditionally

based on self-reports of these feelings. While such methodology is common practice in

psychological studies, understanding precisely what is being measured and incorporating it

into the economic policy analysis remain a serious challenge.2

This paper focuses on consumption events that can be referred to as memorable. Indeed,

life achievements or, more simply, an exotic vacation, can have enduring effects on a person

long after the corresponding events took place. Our goal is to tighten the link between

theory and empirical evidence by modeling the notion of memorability within the revealed-

preference paradigm. We develop a theory of preferences in which an agent’s well-being

at a given point in time is affected non only by the current material consumption, but

also by the recollection of memorable events experienced in the past. Our agent recognizes

that her current choices may generate valuable memories that will affect her future well-

being. Through this channel, memorability affects not only the well-being, but also choice

behavior. Moreover, the effect of past memories may well depend on various features of

the consumption history, such as the intensity or the frequency of the experiences, thereby

allowing for a rich dynamics.

Our contribution is threefold. First, we propose a way to separate behaviorally the mate-

rial effect of consumption for the present moment from its memorable effect that the agent

enjoys in subsequent periods. To this end, we lay an axiomatic foundation for a dynamic

model of memorable consumption. Second, our theory allows us to determine whether a

particular consumption experience is perceived as memorable or ordinary for the agent. If

consumption is represented by a bundle of distinct goods (or categories of goods), we can

identify which goods are memorable. Thus, the notion of memorable good is endogenous

and subjective in our theory. Third, we develop a theory of Markovian memory as a special

case of our model and provide an axiomatic foundation for it. Markovian specification is

useful for thinking about memory as a dynamic variable, and is suitable for applying stan-

dard dynamic programming methods to solve for optimal consumption in applications. The

2See Kahneman, Wakker, and Sarin (1997) and Kahneman (1999) for a more formal treatment of the
measurement issue and a discussion of the main difficulties.
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additional structure also allows us to distinguish between different aspects of the memory

effect, such as longevity and strength, and to make interpersonal comparisons along these

dimensions.

We study memorable consumption in a dynamic framework of preferences over consump-

tion streams of different finite length.3 A typical consumption stream of length t is denoted

by f = (f0, f1, . . . , ft−1), where fτ ∈ C ⊆ RN for N ≥ 1, is the consumption bundle at time

τ = 0, . . . , t − 1. In its simplest and most general form, our agent evaluates a stream f

according to the following criterion:

V (f) =
t−1

∑
τ=0

βτ[u(fτ) +M(fτ−1, . . . , f0,0, . . .)]. (1)

As in the standard theory of exponential discounting, the parameter β ∈ (0,1) is a discount

factor and the index u(fτ) represents the agent’s direct utility of consuming bundle fτ at

time τ . The novel component here is M(fτ−1, . . . , f0,0, . . .) which represents the agent’s

utility derived from the memory of the consumption history (fτ−1, . . . , f0). The expression

u(fτ) +M(fτ−1, . . . , f0,0, . . .) captures the agent’s total subjective well-being that can be

attributed to time τ . The value of M(fτ−1, . . . , f0,0, . . .) is positive for pleasant memories;

however, M is allowed to take negative values to represent unpleasant memories that the

agent would prefer not to carry over into the future, if possible.

The function M in the above representation is identified uniquely, up to multiplying

by a positive constant jointly with u. If M equals zero for all streams, then the agent

is not subject to the phenomenon of memorability and our representation reduces to the

standard exponential discounting. In this case, no consumption or experience is memorable

for the agent from the point of view of the effects on choice. Consumption in our model

is represented by points in RN for arbitrary N ≥ 1. Hence, the role of memories can be

analyzed for the aggregate consumption (N = 1) or for single consumption bundles (N > 1).

If consumption is represented by bundles and the memorable effects of consumption are

separable across goods, then our theory allows the analyst to learn from the agent’s choice

which goods in the bundles are memorable and which are “ordinary.”

Note that memorability is not the only reason for the past to affect the current utility.

One particularly striking example of such interdependence is Mom’s Treat that is discussed

3In our formal setup, the domain of preferences consists of lotteries over such streams.
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by Machina (1989, p. 1643) and can be traced back to much earlier literature. Suppose

that a Mom has a single indivisible treat that she can give either to her daughter or to

her son. In general, she is indifferent between giving the treat to each child. However, if

her son got a treat on the previous occasion, she will strictly prefer to give the treat to

her daughter today. Naturally, such a preference does not rely on whether or not giving a

treat to a child is a memorable experience — it is guided by concerns about fairness. There

are many other reasons for history dependence, including an intrinsic preference for variety

(a person would prefer to accompany his popcorn with a different movie than what was

watched last night, even if both movies are not the ones to remember) and habit formation.

We would like to emphasize that our model is not a universal theory of history-dependent

utility; rather, we are interested precisely in the phenomenon of memorability, its effect on

choice, and ways to incorporate it into economic analysis. Our focus manifests distinctly in

the proposed axioms and in the derived uniqueness results.

Representation (1) provides a general model to study different processes by which the

memorable effect of past consumption accrues over time. The paper discusses three special

cases — two examples of well-known time-dependent laws, and, in more detail, the time-

invariant Markov law.

Our first example provides a time-dependent specification of the memory function M

that accommodates the so called peak-end rule and the related phenomenon of duration

neglect (Fredrickson and Kahneman, 1993). Our second example is based on the idea of

adaptation to the exposure of repeated similar experiences; widely studied in psychology,

its driving forces are not yet fully understood.4 We capture a specific process of adaptation

in the way future flows of utilities are generated from the current enjoyment of memorable

goods. By relating the origins of adaptation to the law of motion of memory, we offer a

formal setting to study the determinants of adaptation and its effects on well-being. This

has important normative implications. For instance, one can use our model to analyze

the efficacy of alternative preventive measures, such as the introduction of breaks into

the repeated consumption of pleasant experiences. Furthermore, the concept of adaptation

has often been advocated to explain the observed phenomenon of preference for increasing

4See, e.g., Diener (1984) and Frederick and Loewenstein (1999) for classic surveys on the topic of sub-
jective well-being and adaptation.
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sequences of outcomes over equivalent decreasing ones — a well-known violation of the

classic discounted utility model. Our model suggests a behaviorally founded reason for

preferring increasing profiles. By choosing upward profiles, agents may inhibit the process

of getting used to high levels of consumption that they might be unable to sustain in the

future.

In addition to the above two examples, we develop axiomatic foundations of a special

case of representation (1) in which memory evolves according to a time-invariant Markov

law. A consumption stream f = (f0, . . . , ft−1) is now evaluated according to

V (f) =
t−1

∑
τ=0

βτ[u(fτ) +mτ−1], (2)

where mτ = ψ(mτ−1, fτ) for τ = 0, . . . , t − 2 and m−1 = 0. The key feature is that the utility

of memorable consumption can be thought of as a “stock” variable, that is determined at

each point in time only by its value in the previous period and the current consumption.

Such recursive specification has the advantage of being highly tractable and amenable to be

used in macroeconomic applications. With the additional Markovian structure of memory,

we conduct a comparative statics analysis and identify two independent channels through

which memories can affect the overall utility in representation (2): One is related to the

persistency of memory in the agent’s mind, and, hence, to the rate at which past memories

decay. The other one is related to the sensitivity of the agent’s memory to consumption and

the ability of consumption to generate new memories. Inter alia, this comparative analysis

helps distinguish the relative contribution to the total well-being of the direct utility from

consumption and of the past memorable experiences.

Related Literature

We conclude this introduction by placing our work within the theoretical literature. Our

theory entails a particular kind of violation of time-separability which places it in stark

contrast with other history-dependent phenomena, notably, habit formation. Two forces

drive decision-making in our model. On one side, the desire to enjoy current consumption;

on the other side, the investment in memories to be enjoyed in the future. These two forces

are intertwined since our far-sighted agent envisions that the choice of current consumption

will feed the memory function in the future and, vice versa, the joy of memories will affect
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the overall utility at each point in time. The departure from the standard time-separable

approach arises purely from the memory component. Only the latter is influenced by a

process of reference dependence: for instance, whether a fine dining experience will generate

memories depends on the reference point inherited from past experiences of the sort. Yet,

tastes do not change over time: consumption history does not affect the utility of current

consumption as it happens in models of habit formation. Our axiomatization captures

precisely such reference dependence in memory, while ruling out reference dependence in

the direct value of consumption. Interestingly, these differences are corroborated by opposite

predictions: habit formation typically induces a desire for consumption smoothing. On the

other side, the investment in memorable goods generates lumpy patterns of consumption,

as argued in Hai, Krueger, and Postlewaite (2015).

The notion of memorable good has been developed first by Hai et al. (2015) and Gilboa,

Postlewaite, and Samuelson (2016). They extend the standard consumption-saving setting

by presenting a model that considers an ordinary good and a memorable good as primitive

elements. The key feature of their model is that the consumption of the memorable good

generates additional flows of utility only if it exceeds a threshold level determined by pre-

vious memorable experiences. They show that optimal consumption profiles of memorable

goods exhibit spikes that cannot be justified by the presence of indivisibilities as tradition-

ally argued for durable goods. Hai et al.’s (2015) theoretical findings are complemented

by an empirical analysis highlighting that the expenditure volatility on memorable goods

is higher than that on nondurable goods and, by contrary, lower than that on durable

goods. As important empirical implications, memorable goods may play an important role

in reducing the magnitude of the welfare losses due to consumption fluctuations and in

rationalizing the evidence on the excess sensitivity of consumption to anticipated income

shocks. By taking a more theoretical perspective, Gilboa et al. (2016) provide an axiomatic

foundation of the static utility structure, given by u(x, y) + v(y, z), at the basis of their

model. The term u(x, y) represents the current utility of consuming the ordinary good x

and the memorable good y; the term v(y, z) is the memory utility generated by consuming

y currently and z in the past.

Compared to the above papers, we pursue a different line of research. We lay a behavioral

foundation of memorable consumption within a temporal framework. We illustrate the
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empirical relevance by studying alternative laws of motion which support a large body of

findings in psychology. By taking a subjective perspective, we let the agent reveal whether a

good is memorable through her choice behavior. Furthermore, we analyze the comparative

effects of memorable consumption on welfare.

2 Setup

Let C ⊆ RN for some N ∈ N be the space of consumption bundles, which we assume to be

nondegenerate and connected. Its typical element is denoted by c = (c1, . . . , cN). The set

Ft = Ct for t ∈ N represents the collection of finite consumption streams of length t, with

the typical element given by f = (f0, f1, . . . , ft−1). Let also ⦸ be a stream of length zero

and F0 = {⦸}. We denote by F = ⋃∞t=0Ft the collection of all finite consumption streams.

The sets Ft for t ∈ N are endowed with the sup-norm topology. For an element f ∈ F , let

ℓ(f) ∶= t if f ∈ Ft.

For t ∈ N, let Lt = ∆ (Ft) be the space of lotteries (probability distributions with finite

support) over streams of length t, and let L = ∆(F) be the space of lotteries over all

consumption streams of finite length. The agent’s behavior is described by a preference

relation (complete preorder) ≿ on L.

As usual, for every P,Q ∈ L and α ∈ [0,1], the lottery αP + (1 − α)Q ∈ L is defined by

αP (f)+(1−α)Q(f) for every f ∈ F . The spaces Lt for t ∈ N are endowed with the topology

of weak convergence: A net {Pα}α converges to some lottery P iff, for any continuous and

bounded function U ∶ Ft → R, we have ∫ U dPα → ∫ U dP .

3 Axiomatic Foundations

Notation. For any streams f = (f0, f1, . . . , fk) and h = (h0, h1, . . . , hm), let h∣f denote

a concatenated stream (h0, h1, . . . , hm, f0, f1, . . . , fk). Furthermore, for any P ∈ L and any

h ∈ F , we use the notation h∣P for a lottery Q obtained from P by prepending h to the

streams in the support of P : Formally, Q is defined as Q(f) = P (f ′) if f = h∣f ′ for some

f ′ ∈ F , and Q(f) = 0 otherwise. Also, as usual, we identify a degenerate lottery giving some

stream f ∈ F with probability one with the stream itself.
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3.1 Axioms

Framework assumptions

We start by posing three standard assumptions which are responsible for the discounted

expected utility structure of the model.

Axiom A1 (Stationarity). There exists a consumption bundle that we identify with 0 such

that, for any P,Q ∈ L, we have

P ≿ Q ⇔ (0)∣P ≿ (0)∣Q.
Axiom A2 (Impatience). For any c ∈ C such that (c) ≻ (0), we have

(c) ≻ (0, c) ≻ (0).
Axiom A3 (Independence). For any P,Q,R ∈ L and α ∈ (0,1], we have

αP + (1 − α)R ≿ αQ + (1 − α)R ⇔ P ≿ Q.

Axioms pertinent to memory

We now present the two key axioms which delineate the behavioral features of memorable

consumption and distinguish it from other forms of history-dependent phenomena. The

first axiom asserts that the agent’s preferences between streams that differ only in the

last-period consumption are independent of the consumption in previous periods.

Axiom A4 (Risk Preference Consistency). For any f, g ∈ F and p, q ∈ L1, we have

f ∣p ≿ f ∣q ⇒ g∣p ≿ g∣q.
This axiom guarantees that the agent’s tastes remain unchanged after varying histories.

As an implication, it rules out various types of reference-dependent evaluation of the current

consumption, most notably habit formation and preferences for intrinsic variety. Besides

that, since the streams f and g can have different lengths, tastes and risk attitudes remain

unchanged with the passage of time. In particular, this rules out potential psychological

effects that the realization of extreme outcomes may have on future risk-taking behavior.

The second axiom is concerned with tradeoffs between memories and consumption.
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Axiom A5 (Memory-Consumption Tradeoff Consistency). For any t ∈ N, f, g ∈ Ft, and

p, q ∈ L1, we have

f ∣p ≿ g∣(1
2
p + 1

2
q) ⇔ f ∣(1

2
p + 1

2
q) ≿ g∣q.

To interpret the axiom, consider the situation of a tradeoff between consumption in a

fixed (the last) period, and pleasant memories for the future that are generated by the

consumption stream in periods from the first to second before last. Namely, suppose that

changes in the initial part of the consumption stream can be counter-balanced by replacing

in the last period a consumption lottery p with a lottery that is a midpoint between p and

some q. The axiom ensures that, in this case, a similar replacement in the last period of

the midpoint between p and q with q — which is a replacement that has the same distance

and direction in the space of last-period consumption lotteries — should have the same

counter-balancing effect. It thus calibrates the relative effects of memory and consumption

in quantitative terms. For further intuition, observe that a simple implication of this axiom

is5 that f ∣p ≿ g∣p if and only if f ∣q ≿ g∣q for all f, g ∈ Ft, and p, q ∈ L1. This implied property

highlights the qualitative content of the axiom by making it clear that the desirability of

f versus g is independent of last-period consumption. Thus, it rules out additional effects

on the subjective well-being that the agent may obtain in early periods from the mere

anticipation of her consumption in the last period.

The axioms of this section clearly hold in the standard model of discounted expected

utility. What is noteworthy, however, is that they capture consistency properties that hold

only with respect to the last-period consumption. The last period becomes significant in

our theory (and different from all preceding periods) because effectively the consumption

in that period is never memorable — for the reason that there are no subsequent periods

in which a memory generated in that period can be enjoyed. Hence, our axioms allow for

reference dependence in memory (as illustrated by our examples later on), but rule out

reference dependence in the direct value of consumption. This way, they formally capture

our intention to model memorable consumption in isolation from other behavioral phenom-

ena, including habit-formation (ruled out by Risk Preference Consistency) and anticipation

(ruled out by Memory-Consumption Tradeoff Consistency).

5We refer to Lemma 8 in the Appendix for a proof of this statement.
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Technical requirements

We conclude with few technical assumptions.

Axiom A6 (Continuity). (1) For all P ∈ L and all t ∈ N, the sets {Q ∈ Lt ∶ Q ≿ P} and
{Q ∈ Lt ∶ P ≿ Q} are closed. (2) For all P,Q,R ∈ L, the sets {α ∈ [0,1] ∶ αP + (1−α)Q ≿ R}
and {α ∈ [0,1] ∶ R ≿ αP + (1 −α)Q} are closed.

Axiom A7 (Nondegeneracy). There exist c∗, c∗ ∈ C such that (c∗) ≻ (0) ≻ (c∗) and (c∗,0) ≻
(c∗,0).

3.2 Basic representation

Notation. Let C∞0 denote the set of infinite sequences of elements of C for which only finitely

many elements are distinct from 0, where 0 is the element of C given by the Stationarity

axiom.

We endow this set with the following topology: a net {f (α)}α converges to some f in C∞0
iff, for some T ∈ N such that ft = 0 for all t ≥ T , there exist an index α0 such that f

(α)
t = 0

for all α ≥ α0 and t ≥ T , and sup0≤t≤T ∣ft − f (α)t ∣ converges to zero. With a slight abuse of

terminology, we will say that a function Φ ∶ C∞0 → R is bounded iff, for any T ∈ N, there

exists K > 0 such that, for any f ∈ C∞0 such that ft = 0 for all t ≥ T , we have ∣Φ(f)∣ ≤K.

Theorem 1. A complete preorder ≿ on L satisfies Axioms (A1)–(A7) if and only if there

exist a scalar β ∈ (0,1), a continuous and bounded function u ∶ C → R such that u(0) = 0
and rangeu contains both positive and negative numbers, and a continuous and bounded

function M ∶ C∞0 → R such that M(0,0, . . .) = 0 and

V (P ) = ∑
f∈suppP

P (f) ℓ(f)−1

∑
t=0

βt[u(ft) +M(ft−1, . . . , f0,0, . . .)] (3)

is a utility representation of ≿ on L.

Theorem 1 delivers a representation of the agent’s preferences that enriches the stan-

dard exponential discounting formula to allow for the effect of memorability. The usual

ingredients of the evaluation formula are the scalar β, that represents the discount factor,

and the function u, that measures the utility of a bundle of goods at the time of material
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consumption. Memorable goods or experiences, besides their direct value at the moment

of consumption, generate additional utilities in the future, and their flows are measured by

a novel component — the function M . The above representation can also be interpreted

as if a stream f is evaluated by an exponential discounting criterion according to which

the overall utility at any time t is given by u(ft)+M(ft−1, . . . , f0,0, . . .). The agent derives

utility from the current consumption, captured by u(ft), and from the recollection of past

memorable experiences, captured by M(ft−1, . . . , f0,0, . . .). Note that the function M is

backward-looking: Its first argument is the most recent past consumption, then the second-

to-most-recent one, and so on. The sequence of arguments ends with an infinite sequence of

zeroes since all consumption streams are assumed to be finite in this theorem.6 Note that

if the agent does not perceive any good or experience as memorable, we have M(⋅) ≡ 0 and

the representation reduces to the standard exponential discounting model.

The parameters β, u, andM that capture the agent’s preferences are identified uniquely,

as demonstrated by our next result. In comparison to the standard uniqueness results in

utility theory, the only minor difference is that the functions u and M are unique only

up to a positive multiplicative factor, whereas arbitrary additive constants are not allowed

because we impose the convention of assigning the numeric value 0 to the neutral element

identified by the Stationarity axiom.

Proposition 2. Two triples (β,u,M) and (β̂, û, M̂) represent the same binary relation ≿

on L as in Theorem 1 if and only if β = β̂, û = λu, and M̂ = λM for some λ > 0.

3.3 Time- and history-dependent memory

One well-known heuristic about the way people recollect prolonged experiences is called

the peak-end rule. Originally introduced by Fredrickson and Kahneman (1993), it builds

upon the view that any hedonic experience can be thought of as consisting of a sequence

of moments which could be identified, for instance, by the unfolding of time. According to

the peak-end rule, the evaluation of a retrospective experience, whether positive or nega-

tive, is determined by the average of only two salient moments, the most intense value —

6A single memory function operating on infinite (but vanishing) streams could be replaced by a collection
of functions operating on finite streams — M1(f0), M2(f1, f0), and so on. Specifying functions in this way
would require imposing additional constraints — it must be that M2(c,0) ≡M1(c), and so on.
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namely, the peak — and the value experienced at its end — namely, the end.7 One no-

table implication is that the duration of an experience has no impact on its retrospective

recollection. For instance, a short, but rather exotic, vacation may generate more intense

memories in comparison to a longer, but more ordinary, vacation. This pattern, dubbed

duration neglect, is observed in numerous experimental studies which suggest that prolong-

ing an unpleasant experience by adding some extra moments of diminished discomfort may

mitigate the subsequent assessment of the overall experience.8 Our next example proposes

a simple specification of the function M that accommodates the empirical evidence on the

peak-end rule and duration neglect.

Example 1. Let the function M from representation (3) be defined as

M(0, . . . ,0´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
t

, fk, . . . , fk−l+1,0, fk−l−1, . . . , f0,0, . . .) = βt 1

2
(u(fj∗) + u(fk))K, (4)

for streams f ∈ F such that u(fj) > 0 for all j ∈ Z+ with k − l < j ≤ k, where t, k ∈ Z+, l ∈ N,

and l ≤ k +1. Moreover, j∗ ∈ Z+ satisfies k − l < j∗ ≤ k and u(f(j∗)) ≥ u(f(j)) for all j ∈ Z+
with k− l < j ≤ k. The parameter K > 0 stands for the magnitude constant. For streams that

do not conform to the above pattern, set M equal to zero.9 In this example, we identify the

periods of no memorable “experiences” (as understood in the works of Kahnemann) with

zero consumption, and the duration of an experience with the number of consecutive positive

consumptions: In specification (4), the most recent memorable experience lasted l periods.

The factor K is responsible for the magnitude of the memory effect (relative to ordinary

utility from consumption), and the factor βt ∈ (0,1) leads to exponential decay of memory

once the experience is over.

Note also that the rule (4) can be applied not only to the overall consumption (that

is, to fτ representing the entire bundle consumed in period τ), but also to one particular

dimension of the consumption, e.g., a generalized “vacation good.”

To further illustrate, consider a stream of one-dimensional consumption (f0, f1, . . . , f10) =
(2,6,0,0,1,3,1,1,0,0,0), and suppose that u(x) = x and K = 1. Then, the sequence of

7For experimental evidence, see, e.g., Ariely and Carmon (2000), Fredrickson (2000), Kahneman (2000a,
2000b), and references therein.

8E.g., Varey and Kahneman (1992) and Kahneman, Fredrickson, Schreiber, and Redelmeier (1993).
9This example focuses on positive experiences; nevertheless, it can be easily adapted to cover negative

experiences, as well.
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memory terms

M(f0,0, . . .),M(f1, f0,0, . . .), . . . ,M(f10, f9, . . . , f0,0, . . .)
is given by 2,6,6β,6β2,1,3,2,2,2β,2β2,2β3.

Another important class of behavioral regularities related to past memories is studied in

the well-known adaptation-level theory in psychology.10 For economics, the most important

prediction of the theory is that repeated exposure to the same good experience will gradually

attenuate the initial feeling of pleasure; similarly, a persistent exposure to the same bad

experiences will make the feeling of discomfort wane.

Our model is not intended to capture full-fledged adaptation-level theory. Indeed, our

axioms imply that the current utility from consumption is not reference-dependent. How-

ever, the memorability of experiences and their value at recollection time may well depend

on the past history of similar experiences and exhibit the adaptation features.

Example 2. Let the function M from representation (3) be defined as

M(ft, . . . , f0,0, . . .) = G(ft,A(ft−1, . . . , f0,0, . . .)), (5)

for all f ∈ F and t ∈ Z+, where A ∶ C∞0 → R is defined as A(ft, . . . , f0,0, . . .) = α∑∞τ=0(1 −
α)τft−τ , α ∈ (0,1), and G ∶ R×R→ R is a continuous function that is monotone in the first

argument and such that G(0,0) = 0.
In this specification, A(ft−1, . . . , f0,0, . . .) represents the adaptation level acquired from

consumption up to time t− 1 and sets the reference point for new memories at time t. The

coefficient α is the weight attributed to the most recent experience in determining the new

adaptation level. In fact, the formula for A can be also written as A(ft, . . . , f0,0, . . .) = αft+
(1−α)A(ft−1, . . . , f0,0, . . .). The function G in (5) measures the utility value of the memory

from consuming bundle x after a history of consumption summarized by the reference level

r. In Tversky and Griffin’s (1991) terminology, A(ft−1, . . . , f0,0, . . .) corresponds to the

endowment level accumulated up to time t, whereas G quantifies the contrast effect. The

simplest specification for G can be G(x, r) = max{x − r,0}, in which a positive flow of

10See Helson (1947, 1948) for origins of the theory that started with the perceptual adaptation in vision.
For more recent works, see, e.g., Frederick and Loewenstein (1999).
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memory utility is generated only if the most recent consumption exceeds the reference level.

Naturally, a more general specification for G may accommodate a broader spectrum of

adaptation trends in memories’ recollection and, in particular, may not necessarily require

new experiences to beat the prior record. Indeed, a person may have reached very high

standards for fine dining and, at the same time, have a pleasant memory from coffee and

pastry from some small bakery.

The broad paradigm of adaptation-level theory gives rise to a number of widely rec-

ognized patterns. For instance, the theory suggests that introducing an interval of lower

consumption in a lengthy stream of positive consumption may make the agent to appreciate

it more.11 In the formal language, we may be interested in the comparison of mixtures of

streams that follow the pattern

1

3
(c, c,0, c, c,0, . . .) + 1

3
(0, c, c,0, c, c, . . .) + 1

3
(c,0, c, c,0, c, . . .) ≻

2

3
(c, c, c, c, c, c, . . .) + 1

3
(0,0,0,0,0,0, . . .).

According to the standard criterion of expected discounted utility, the agent should be

indifferent between them because, at each date, she consumes c with the probability 2
3
and

zero with the probability 1
3
in both the left-hand and the right-hand sides. However, if

memorability is taken into account, a constant stream of high consumption may generate

less memory (and less utility from memory) then streams in which high consumption is

interrupted. This can easily be accommodated in our model with a suitable choice of the

parameters.

Another example is the following well-known challenge to the standard discounted utility

criterion: people often exhibit a preference for a sequence of increasingly pleasant outcomes

to the same outcomes but in the reverse order.12 Similarly, when exposed to a sequence of

negative outcomes, they often prefer a decreasing order. Such preference statements create

a stark contrast with the predictions of the standard theory of discounting, according to

11This prediction is supported by evidence from psychology and marketing. See, e.g., Ariely and Za-
uberman (2000) and Nelson and Meyvis (2008).

12For instance, Loewenstein and Sicherman (1991) report evidence in support of a preference for in-
creasing sequences of wages over time. Similarly, Loewenstein and Prelec (1991, 1993) show that, when
confronted with the choice between a sequence of increasingly pleasant dining experiences and the same
one but in decreasing order, the majority of subjects exhibits a preference for the upward-shaped profile.
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which the best experience is the most desirable for an agent if it comes at the earliest

moment. These patterns have a natural explanation if the role of adaptation is taken

into account, and they can be accommodated in our theory. More importantly, our model

suggests a behaviorally founded reason for preferring increasing profiles — if the utility

from recollecting past experiences follows an adaptation process, then an increasing profile

will generate higher utility flows from memory than an equivalent decreasing profile.

4 Markovian memory

4.1 The Markovian property

In this section we turn to a prominent special case of our general representation that is

particularly suitable for applications in macroeconomics and repeated games. Specifically,

we provide a behavioral characterization according to which the memory of past consump-

tion adheres to a Markovian law of motion: the utility from memorable consumption at

any time t is determined only by its value at time t − 1 and the consumption at time t,

and it does not depend directly on the patterns of consumption at earlier dates. Hence, the

utility from memorable consumption can be thought of as a “stock” variable that is driven

by the current consumption and evolves according to a time-invariant Markovian process.

Our analysis starts by introducing the notion of a tradeoff between memory and con-

sumption.

Definition 1. We say that the memory after a stream f k-dominates the consumption z,

where k > 0, f ∈ F , and z ∈ C, if

(f ∣0) ≿ 1

k + 1
f +

k

k + 1
(f ∣z). (6)

We denote (6) by f ≿m−k z. A similar strict preference

(f ∣0) ≻ 1

k + 1
f +

k

k + 1
(f ∣z).

is denoted by f ≻m−k z.

To understand the gist of this definition, observe that the stream on the left-hand side

of (6) in comparison to the lottery on the right-hand side offers the agent a higher chance
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of enjoying the memory of f in the subsequent time period — on the left-hand side, the

probability of enjoying such memory is one, while on the right-hand side it is only k
k+1 , a dif-

ference of 1
k+1 . In exchange for that, the right-hand side offers the agent a potentially higher

level of consumption in the last period, z instead of zero.13 The additional consumption of

z is available to the agent with the probability k
k+1 . Thus, the pattern in (6) describes a

preference for enjoying the memory produced by f over the direct benefits of consuming z.

Moreover, this preference is quantified: If the agent prefers the left-hand side, then, loosely

speaking, the pleasure of the memory produced by f is at least k times higher than the

pleasure of consuming z.14

The notion of consumption-memory tradeoff allows us to compare consumption streams

in terms of their value for the generation of memories at a specific point in time. As shown

next, a stream f memory-wise dominates another stream g if, for any consumption bundle

z that the agent is willing to give up to enjoy the memory of g, she is willing to give it up

to enjoy the memory of f a fortiori.

Definition 2. For f, g ∈ F , we say that f generates a higher value of memory for the next

period in comparison to g if

g ≿m−k z ⇒ f ≿m−k z for all k > 0 and z ∈ C.

We denote such a relationship between streams f and g by f R≿ g. Extending this definition,

we say that f generates a strictly higher value of memory in comparison to g if

g ≿m−k z ⇒ f ≻m−k z for all k > 0 and z ∈ C,

and denote this relationship by f S≿ y. Finally, we say that f generates the same value of

memory as g if

g ≿m−k z ⇔ f ≿m−k z for all k > 0 and z ∈ C,

and denote this relationship by f I≿ g.
13The use of the neutral element 0 in the left-hand side of the above definition is convenient but not

mandatory. This (and subsequent) definitions can be modified to use a different reference point for mea-
suring tradeoffs.

14As usually is the case, it is the usage of lotteries that allows us to give cardinal meaning to relationships
between utility levels.
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The above definitions achieve two important goals. First, they provide a behavioral notion

of what it means for one consumption stream (f0, . . . , ft−1) to produce a higher-valued

memory for the period t relative to another stream (g0, . . . , gt−1), regardless of the utilities

that these streams generate for periods 0, . . . , t − 1. Second, these definitions enable the

comparison of the value of memory for streams of different lengths. This demonstrates that

it is behaviorally meaningful to attribute the memory utility M(ft−1, . . . , f0,0, . . .) to date

t in the general representation (3).

We apply the above definition to formulate our key axiom for the Markovian represen-

tation.

Axiom A8 (Markovian Property). For any f, g ∈ F ,

f I≿ g ⇒ (f ∣c) I≿ (g∣c) for all c ∈ C.

The antecedent of this property considers the situation in which the memory effect of f

is equivalent to that of g. That is, both streams generate the same value of memory in the

period following the consumption of their respective last component. The axiom maintains

that if these two streams are extended by one additional period of consumption, then the

ranking of their value for memory remains the same. Hence, the impact of g on memory is

equivalent to that of f for any given last-period consumption c ∈ C.

Our next theorem shows that this property, together with our basic axioms (A1)–(A7),

delivers a convenient time-invariant Markovian representation.

Theorem 3. Let ≿ be a complete preorder on L. The following statements are equivalent:

(i) ≿ satisfies Axioms (A1)–(A7) and (A8);

(ii) there exist a scalar β ∈ (0,1), a continuous and bounded function u ∶ C → R with

u(0) = 0, a bounded interval I of R that contains 0, and a continuous function ψ ∶

I ×C → I with ψ(0,0) = 0 and rangeψ = I, such that a utility representation of ≿ on L

is V (P ) = ∑f∈suppP P (f)V (f) for all P ∈ L, where V (f) for all f ∈ F is computed as

V (f) = ℓ(f)−1

∑
t=0

βt[u(ft) +mt−1],
where mτ = ψ(mτ−1, fτ) for τ = 0, . . . , ℓ(f) − 2,

m−1 = 0.

(7)
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According to representation (7), the evaluation of a stream f at any time t is given

by u(ft) +mt−1, where u(ft) is the material utility of ft and mt−1 is the stock of memory

accumulated up to time t. The function ψ describes the process of incorporating the memory

effect of consuming ft into mt−1, giving rise to the next-period value, mt. Similarly to all

specifications of the memory utility discussed earlier, memory may have long-lasting effects

here, as well. However, the dependence of mt on consumption in periods t − 1, . . . ,1,0 is

encapsulated in the previous stock of memory, mt−1. This is the nature of our Markovian

evolution of memory. Note that such recursive process of computing the values of mt is

particularly tractable because the function ψ is independent of time.

Theorem 3 represents preferences in terms of quadruples of the form (β,u, I,ψ). These
quadruples are essentially unique, as shown next.

Proposition 4. Two quadruples (β,u, I,ψ) and (β̂, û, Î , ψ̂) represent the same binary re-

lation ≿ on L as in Theorem 3 if and only if β̂ = β and there exists λ > 0 such that û = λu,

Î = λI, and ψ̂(m,c) = λψ(m/λ, c) for all m ∈ Î and c ∈ C.

4.2 Properties of the memory evolution function

In studying possible specifications for the law of motion of memory, monotonicity of the

function ψ in its first or second argument stands out as a desirable feature. Here we show

that these monotonicity properties have natural behavioral counterparts.

Axiom (Monotonicity in the Past Memory). For any f, g ∈ F , f R≿ g implies (f ∣c)R≿ (g∣c)
for any c ∈ C.

This axiom prescribes that the relationship between any two non-degenerate streams f

and g in terms of value of memory is preserved if they are both extended by the same one

period of extra consumption c. In passing, note that Monotonicity in the Past Memory

implies the Markovian property.

Axiom (Monotonicity in the Current Consumption). For any x, y ∈ C, (x) ≿ (y) implies

(f ∣x) R≿ (f ∣y) for any f ∈ F .

This axiom simply ensures that a better bundle in terms of direct consumption should

generate a higher value of memory if adjoined to any consumption stream.
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The following proposition confirms that each of these properties is equivalent to the

monotonicity of the memory evolution function in the respective argument.

Proposition 5. Suppose that ≿ is a complete preorder on L that satisfies Axioms (A1)–

(A7) and (A8), and let (β,u, I,ψ) be its representation as in Theorem 3. Then:

(i) ≿ satisfies Monotonicity in the Past Memory if and only if ψ(m1, c) ≥ ψ(m2, c) for all
m1,m2 ∈ I such that m1 ≥m2 and all c ∈ C;

(ii) ≿ satisfies Monotonicity in the Current Consumption if and only if ψ(m,c1) ≥ ψ(m,c2)
for all m ∈ I and all c1, c2 ∈ C such that u(c1) ≥ u(c2).

4.3 Comparative statics analysis

This section presents a rigorous comparative statics analysis of the effects of memorable

consumption on well-being. We propose alternative ways to compare two agents and de-

termine if one of them is more sensitive to memorable experiences than the other. We thus

lay out a foundation for studying well-being across individuals by recognizing the role of

past experiences in affecting decision-making. Moreover, this inquiry proves useful for the

purpose of developing parametric examples of the memory evolution function.

As standard in the literature on comparative statics, we start by disentangling the effects

of memorable consumption from other unrelated determinants of decision-making. To this

end, we consider agents that differ in their attitudes toward memorable consumption, while

being identical for the other components of their tastes. That is, we require that they assess

atemporal risk (including deterministic consumption bundles) and the passage of time in

the same way. The following routine definition formalizes these assumptions.

Definition 3. Let ≿1 and ≿2 be relations on L.

(i) We say that ≿1 and ≿2 have the same risk attitudes if

(p) ≿1 (q) ⇔ (p) ≿2 (q) for all p, q ∈ L1; (8)

(ii) Provided that condition (8) holds, we say that ≿1 and ≿2 have the same time attitudes

if

(0∣p) ≿1 (q) ⇔ (0∣p) ≿2 (q) for all p, q ∈ L1.
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If (β1, u1, I1, ψ1) and (β2, u2, I2, ψ2) are representations of ≿1 and ≿2, respectively, as in

Theorem 3, then they have the same risk attitude if and only if there exists λ > 0 such that

u2 = λu1; and, in addition, they have the same time attitude if and only if β2 = β1.

The following definition introduces the language that will be used to establish our com-

parative statics results. It therefore constitutes a key step for the subsequent development.

It extends Definition 2 about the value of memory for a single agent to comparisons across

different agents.

Definition 4. Let ≿1 and ≿2 be relations on L that have the same risk and time attitudes.

For f, g ∈ F , we say that f generates a higher value of memory for the next period for ≿1
in comparison to g for ≿2 if

g ≿m−k2 z ⇒ f ≿m−k1 z for all k > 0 and z ∈ C.

We denote the above relationship by f ≿1R≿2 g. We also say that f generates a strictly

higher value of memory for ≿1 in comparison to g for ≿2 if

g ≿m−k2 z ⇒ f ≻m−k1 z for all k > 0 and z ∈ C.

We denote this relationship by f ≿1S≿2 g. Finally, we say that f generates the same value

of memory for ≿1 as g for ≿2 if

g ≿m−k2 z ⇔ f ≿m−k1 z for all k > 0 and z ∈ C.

We denote this relationship by f ≿1I≿2 g.

We are now ready to study the comparative attitudes towards memorable consumption.

Throughout, we focus on two agents respectively endowed with a consumption stream that

has the same impact on their memory. That is, agents 1 and 2 face, respectively, non-

degenerate streams f and g which generate the same value of memory for both of them.15

Thus, our natural prerequisite to make meaningful comparisons is that f ≿1I≿2 g.

Our first behavioral notion establishes when we can say that such an equivalent stock of

memories has a more persistent effect for one agent compared to another.

15Note that it would not be sufficient to consider one common stream for both agents. From a subjective
viewpoint, the same stream may give rise to different values of memory for different agents. By considering
different streams and let individuals express their preferences, we fully take this aspect into account.
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Definition 5. Let ≿1 and ≿2 be relations on L that have the same risk and time attitudes.

For any f, g ∈ F such that f ≿1I≿2 g, we have that:

(a) Positive memorable consumption has longer effects for ≿2 in comparison to ≿1 if

f R≿1 (0) ⇒ (g∣0) ≿2R≿1 (f ∣0)R≿1 (0).
(b) Negative memorable consumption has longer effects for ≿2 in comparison to ≿1 if

(0) R≿1 f ⇒ (0)R≿1 (f ∣0) ≿1R≿2 (g∣0).
Parts (a) and (b) provide symmetric definitions that distinguish between positive and

negative experiences. Focus on part (a) first. The antecedent defines the sign of the stock

of memory: if the stream f generates a higher value of memory than the neutral element

(0) for agent 1, then it must be that f brings pleasant memories to her. Note that this

assumption, together with f ≿1I≿2 g, implies that g has a higher value of memory than (0)
for agent 2, as well (i.e., g R≿2 (0)).16 Thus, item (a) restricts attention to comparisons of

agents with an equivalent baggage of positive experiences. Now, extend streams f and g

by adding one last period of zero consumption. That is, consider streams f ∣0 and g∣0: such
profiles offer both agents to enjoy the memory of f and g for one extra period. This is the

only difference in comparison to f and g. Then, we say that a positive memory has longer

effects for agent 2 compared to agent 1 if g∣0 generates a higher value of memory for agent

2 than f ∣0 does for agent 1. We interpret this pattern as evidence that g persists longer in

agent 2’s mind than does f for agent 1.

Part (b) presents a symmetric notion for unpleasant experiences. The implication now

moves in the opposite direction to ensure that the sign of memory is negative. For a memory

to qualify as negative, it must be the case that zero consumption (and hence zero memory)

makes the agent better off. Moreover, the indices of 1 and 2 are reversed in the consequent

because, when studying the effects of negative experiences, we seek to capture the greater

absolute value of the effect.

Next proposition provides a characterization in terms of the Markovian representation

and shows that comparative attitudes concerning memory persistency are determined by

the Markovian function ψ.

16Conversely, note that positive memories necessarily satisfy the antecedent condition: that is, a stock of
memory is (weakly) positive if no consumption bundle with positive utility can be dominated by memory.
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Proposition 6. Suppose that ≿1 and ≿2 are complete preorders on L that satisfy Ax-

ioms (A1)–(A7) and (A8) and have the same risk and time attitudes. Let (β,u, I1, ψ1)
and (β,u, I2, ψ2) be their representations, as in Theorem 3. Then,

(i) ≿2 exhibits longer effects of positive memory if and only if ψ2(m,0) ≥ ψ1(m,0) for all
m ∈ I1 ∩ I2 such that m ≥ 0;

(ii) ≿2 exhibits longer effects of negative memory if and only if ψ2(m,0) ≤ ψ1(m,0) for all
m ∈ I1 ∩ I2 such that m ≤ 0.

The above proposition characterizes when one can say that the same stock of memory

has more lingering effects for one agent than another. It therefore provides a comparative

measure of how long a memory persists in one agent’s mind.

The comparative statics analysis can be performed along another dimension that reflects

how easy it is for an agent to generate valuable memory. More precisely, we propose a

ranking criterion that is based on the minimal level of consumption that is sufficient to

maintain the stock of memory at a particular level. Since the stock of memory in the

Markovian specification is measured in terms of its utility, this criterion can be interpreted

as a way to compare the strength of the effects of memorable consumption — the smaller

is the consumption that maintains a particular level of utility from memory, the stronger

is the effect of memorable consumption on the agent’s behavior.

Definition 6. Let ≿1 and ≿2 have the same risk and time attitudes. For any f1, f2 ∈ F such

that f1 ≿1I≿2 f2, we have that:

(a) Positive memorable consumption has stronger effects for ≿2 in comparison to ≿1 if

f1 R≿1 (0), and
(i) if (f1∣x) R≿1 f1, (f2∣y) R≿2 f2, and (y) ≿2 (x) ≿2 (0) for some x, y ∈ C, then

(f1∣y)R≿1 f1 and (f2∣x) R≿2 f2;
(ii) if (f1∣x) S≿1 f1, (g∣y) S≿2 f2, and (y) ≿2 (x) ≻2 (0) for some x, y ∈ C, then

(f1∣y) S≿1 f1 and (f2∣x) S≿2 f2.
(b) Negative memorable consumption has stronger effects for ≿2 in comparison to ≿1 if

(0) R≿1 f1, and
(i) if f1 R≿1 (f1∣x), f2 R≿2 (f2∣y), and (0) ≿2 (x) ≿2 (y) for some x, y ∈ C, then
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f1 R≿1 (f1∣y) and f2 R≿2 (f2∣x);
(ii) if f1 S≿1 (f1∣x), f2 S≿2 (f2∣y), and (0) ≻2 (x) ≿2 (y) for some x, y ∈ C, then

f1 S≿1 (f1∣y) and f2 S≿2 (f2∣x).
Analogously to the previous notion of comparative longevity, also the above criterion

focuses on the comparison of two streams that generate the same stock of memory for

the agents, as revealed by the comparative relation ≿1I≿2 . As before, part (a) considers

the case in which such stock of memory represents positive experiences for agent 2 (and,

hence, for agent 1, as well). Suppose that x and y are consumption bundles that make

the extended streams f1∣x and f2∣y more valuable memory-wise than the original f1 and

f2 for agents 1 and 2, respectively. Importantly, suppose that y is weakly preferred to x

(by both agents, clearly). Then, the axiom prescribes that x and y are interchangeable as

both of them should lead to an increase in the stock of memory for both individuals. Note

that the definition applies to situations in which x and y are ranked in a non-expected

way; this formalization rules out the case in which y is preferred to x, x and y increase

the stock of memory of agents 1 and 2 respectively, and yet, x outperforms y in terms of

generation of valuable memory (i.e., x fails to increase the value for the more sensitive agent

2). Part (a)(ii) repeats the same requirement for strict increases of the stock of memory,

and Part (b) states a symmetric definition for negative stocks of memory and consumption

levels (in which case the rankings of streams are reversed because what matters is the

absolute magnitude of the effect).

The next proposition translates the behavioral notion of comparative strength into a

parametric characterization.

Proposition 7. Suppose that ≿1 and ≿2 are complete preorders on L that satisfy Ax-

ioms (A1)–(A7) and (A8) and have the same time and risk preferences. Let (β,u, I1, ψ1)
and (β,u, I2, ψ2) be their representations as in Theorem 3.

(a) For i = 1,2, let c+i ∶ Ii ⇉ R and c̊+i ∶ Ii ⇉ R be correspondences (possibly, empty valued)

defined as c+i (m) = {r ≥ 0 ∶ u(c) = r for some c ∈ C and ψi(m,c) ≥ m} and c̊+i (m) =
{r > 0 ∶ u(c) = r for some c ∈ C and ψi(m,c) >m}. Then, positive memory has stronger

effects for ≿2 in comparison to ≿1 if and only if c+2(m) and c̊+2(m) are dominated by

c+1(m) and c̊+1(m), respectively, in the strong set order for all m ∈ I1 ∩ I2 ∩R+;
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(b) For i = 1,2, let c−i ∶ Ii ⇉ R and c̊−i ∶ Ii ⇉ R be correspondences (possibly, empty valued)

defined as c−i (m) = {r ≤ 0 ∶ u(c) = r for some c ∈ C and ψi(m,c) ≤m} and c̊−i (m) = {r <
0 ∶ u(c) = r for some c ∈ C and ψi(m,c) < m}. Then, negative memory has stronger

effects for ≿2 in comparison to ≿1 if and only if c−2(m) and c̊−2(m) dominate c−1(m) and
c̊−1(m), respectively, in the strong set order for all m ∈ I1 ∩ I2 ∩R−.

To illustrate the comparative statics notions developed in this section, we present two

parametric rules for the evolution of memory and analyze the traits of longevity and

strength in terms of the parameters of these rules.

Example 3. Suppose that agents 1 and 2 are characterized by a Markovian memory repre-

sentation with the same β and u, and their evolution functions ψi have the following linear

autoregressive form:

ψi(m,c) = αim + (1 − αi)Kiu(c), (9)

where αi ∈ (0,1) and Ki > 0 for i = 1,2.

As follows from Proposition 6, the agent with longer positive memory has greater values

of ψi(m,0) ≡ αim for all non-negative values of m. Therefore, agent 2’s positive memory

has longer effect if and only if α2 ≥ α1 (and if and only if agent 2’s negative memory has

longer effect). Note that the longevity of memory is controlled only by the parameter α and

is unaffected by changes in K.

Next, we apply Proposition 7. The strength of the effect of positive memory is determined

by the ordering of the set of solutions of inequalities αim+(1−αi)Kiu(c) ≥m for i = 1,2 —

that is, u(c) ≥ 1
Ki

m — for all non-negative values of m, as well as the set of solutions

of similar strict inequalities. Such a set for agent 2 is dominated if and only if 1
K2
≤ 1

K1
.

Hence, agent 2’s positive memory has stronger effect if and only if K2 ≥ K1. Similar to

longevity, the strength of memory effect is controlled by one parameter, namely K, and this

is independent of any changes in the other parameter, α.

Example 4. Suppose that agents 1 and 2 are characterized by a Markovian memory repre-

sentation with the same β and u, and their evolution functions ψi have the following form:

ψi(m,c) = αimax{m,Kiu(c)} + (1 − αi)Kiu(c), (10)
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where αi ∈ [0,1] and Ki > 0 for i = 1,2.

As in the previous example, agent 2’s positive memory has longer effect if and only if

α2 ≥ α1. Note that the case αi = 1 corresponds to maximum longevity. In this case, memory

of a single positive experience never decays, and continues to contribute to the agent’s

per-period utility forever (or until a stronger positive experience occurs). To compare the

strength of effects across agents, we need, again, to order the sets of solutions of inequalities

αimax{m,Kiu(c)}+(1−αi)Kiu(c)} ≥m, as well as αimax{m,Kiu(c)}+(1−αi)Kiu(c)} >
m, for i = 1,2. The solutions of the weak inequalities become trivial for α = 1. However, weak

and strict inequalities together unambiguously determine the way the agents are compared:

agent 2’s positive experience has stronger memory effect if and only if K2 ≥K1.

Specification (9) for the evolution function can be slightly generalized. Let v ∶ R → R

be a strictly increasing function with v(0) = 0 and w ∶ C → R. Then, we can consider the

following law for the evolution of memory:

ψ(m,c) = v(αv−1(m) + (1 −α)w(c)),
where α ∈ (0,1).17 In this case, we can change variables by defining m̃t = v−1(mt), and
re-write representation (7) as

V (f) = ℓ(f)−1

∑
t=0

βt[u(ft) + v(m̃t−1)],
where m̃τ = αm̃τ−1 + (1 −α)w(fτ) for τ = 0, . . . , ℓ(f) − 2,

m̃−1 = 0.

(11)

Here, the stock of memory m̃t is measured in different “units,” which leads to a specifica-

tion convenient for applications: AR(1)-type law for memory and (potentially) non-linear

function in the agent’s objective.

5 A consumption-savings problem

This section presents an application of our Markovian memory specification by introducing

memorable consumption into the standard linear-quadratic consumption-savings problem.

17Example 3 corresponds to v(m) =m and w(c) =Kiu(c).
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Suppose that, in periods t = 0,1,2 . . ., a consumer receives income yt that is stochastic

and iid across time. There are no borrowing constraints, so that she can reallocate income

between periods by borrowing or saving at the gross interest rate R > 0. Time horizon

is infinite and the future is discounted using discount factor β ∈ (0,1). For simplicity, we

assume there is only one good (N = 1).18 Utility from physical consumption is given by

u(c) = c− 1
2
c2; utility from consuming memories conforms to specification (11) with v(m̃) =

bm̃ − 1
2
am̃2, a, b > 0, and w(c) = c.19 Thus, the consumer faces the following maximization

problem:

maximize
{ct}∞t=0,{st}

∞

t=0
,{mt}∞t=0

E0 [∞∑
t=0

βt (ct − 1

2
c2t + bm̃t−1 −

1

2
am̃2

t−1)]
s.t. ct + st = yt +Rst−1 for t = 0,1, . . .,

m̃t = αm̃t−1 + (1 − α)ct for t = 0,1, . . .,

s−1 is given,

m̃−1 = 0.

(12)

Finally, assume that R = 1
β
, s−1 ≥ 0, and E[y] > 0.

We are interested in extending the standard Permanent-Income-type solution of the prob-

lem to account for the role of memories.20 Our goal is to identify some life-cycle implications

of memorable consumption.

The Lagrangian of the problem is

L = E0 [∞∑
t=0

βt (ct − 1
2
c2t + bm̃t−1 −

1

2
am̃2

t−1

−λt (ct + st − yt − 1

β
st−1) − µt(m̃t −αm̃t−1 − (1 −α)ct)) ] .

18There is no loss of generality in focusing on this special case. Allowing for multiple, ordinary or
memorable, goods (N > 1) would not affect our analysis.

19Note that this example deviates from our specification (11) by considering infinite consumption streams
and a non-monotone function v.

20Doing that, we will ignore the usual issues related to non-monotonicity of the utility from consumption
and the form of conditions at infinity.
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The First-Order Conditions are

1 − ct − λt + (1 −α)µt = 0,

− λt +Et[λt+1] = 0,
β(b − am̃t) − µt + βαEt[µt+1] = 0.

By combining this system with the constraints, we eventually obtain the following solution:

ct = ((1 − β)yt + βE[y] + 1 − β

β
st−1) (1 + κ) − κm̃t−1, (13)

where κ ≥ 0 is a constant given by

κ =

√
1 − 2β(α2 − a(1 −α)2) + β2(α2 + a(1 − α)2)2 − (1 − β(α2 − a(1 −α)2))

2α(1 − βα) .21

Expression (13) has an intuitive interpretation. If the effect of memorability is absent

(a = 0 or α = 1), then κ = 0 and we recover Hall’s (1978) classic result that “consumption

follows a random walk.” In this case, the agent consumes the sum of the fraction (1 − β)
of the income shock yt − E[y], the average income E[y], and the interest from savings
1−β
β
st−1; the fraction β of her income shock and the body of the savings are kept as savings.

In the presence of memorability (a > 0, 0 < α < 1), we observe that the agent exhibits

a stronger reaction to income shocks and consumes more out of them (κ > 0). Albeit

framed within a simplified setting, our finding suggests that memorable consumption may

help explaining the well-known empirical evidence on excess sensitivity of consumption to

income changes.22 Moreover, the optimal level of consumption is negatively correlated with

the stock of memory — it increases as the stock of memory decreases, and vice versa.

To further illustrate, assume for a moment that there is no income uncertainty and

yt = E[y] for all t. Then, the consumption rule can be rewritten as ct = c̄t + κ(c̄t − m̃t−1),
21This consumption rule is supported by

µt = ((1 − β)yt + βE[y] + 1 − β
β

st−1 − m̃t−1)κ′ + β

1 − βα(b − am̃t−1),
where

κ′ =
√
1 − 2β(α2 − a(1 − α)2) + β2(α2 + a(1 − α)2)2 − (1 − β(α2 − a(1 − α2)))

2α(1 − βα)2
22See, e.g., the surveys of Attanasio (1999) and Jappelli and Pistaferri (2010).
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where c̄t = E[y] + 1−β
β
st−1. In the standard linear-quadratic consumption-savings model,

the expression for c̄t corresponds to the permanent income. In our model, it becomes a

reference that determines the level of consumption taking into account the accumulation

of memory. If m̃t−1 = c̄t then the agent is in a steady state and both her consumption

and the stock of memory will stay constant; if m̃t−1 exceeds c̄t then she will consume less

than c̄t and opt for depleting part of her stock of memory; and, if m̃t−1 has not reached

c̄t then she will consume more than c̄t in order to build up her stock of memory. From

the viewpoint of life-cycle profiles, this dynamics implies that agents tend to under-save

and over-consume when they are young (as they start with m̃−1 = 0 < c̄0). As the stock of

memory accumulates in subsequent periods, the gap will reduces and over-consumption will

attenuate. If we compare consumption paths across agents, then those with higher κ over-

consume more at young age, save less, and approach the steady state with lower savings.

This behavior is rational, and can be interpreted as hidden savings in the form of investment

in pleasant memories that substitutes for investment in financial assets. Furthermore, this

dynamics may represent one key source of support for the empirical evidence according to

which individuals consume too little at the retirement age compared to the predictions of

the canonical model.23

The magnitude of the agent’s excessive reaction to income shocks (relative to predictions

of the standard model), as well as features of the life-cycle consumption pattern such

as over-consumption when young, depend on the parameters of preferences through the

value of κ. Holding everything else fixed, κ is an increasing function of the parameter

a that, jointly with b, captures the strength of memorable effects of consumption. Hence,

stronger memorable effect leads to greater over-consumption at young age and also stronger

reaction to income shocks. As a function of the longevity of memory that is captured by

the parameter α, κ has an inverse U-shape. Indeed, as α approaches one, memory becomes

very persistent and is hardly affected by consumption. In the limit, the law of motion for

memory takes the form of m̃t = m̃t−1, and additional investments in future memory are

fruitless. On the other side of the range, as α approaches zero, memory loses its lasting

effect, and the decision problem transforms into the standard question of consuming today

23It is worth mentioning that some works point to the role of demographics and changes in family size in
explaining life-cycle consumption patterns (see, e.g., Fernández-Villaverde and Krueger (2007)). This seems
consistent with our findings as a substantial portion of memorable expenditures might be household-related.
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versus tomorrow. The effect of memorability is the greatest at intermediate levels of α.

Appendix

A Proof of the basic representation

Lemma 8. Suppose that ≿ is a preference relation on F that satisfies the Memory-Con-

sumption Tradeoff Consistency and Continuity axioms. Then, for any t ∈ N, f, g ∈ Ft, and

p, q ∈ L1, we have

f ∣p ≿ g∣p ⇔ f ∣q ≿ g∣q.
Proof. First, we claim that, for any n ∈ N, and for any t ∈ N, f, g ∈ Ft, and p, q ∈ L1,

f ∣p ≿ g∣(n−1
n
p + 1

n
q) ⇔ f ∣( 1

n
p + n−1

n
q) ≿ g∣q. (14)

Indeed, for n = 1, this statement is a triviality. Suppose that it holds for some n ∈ N, and that

f ∣p ≿ g∣( n
n+1p +

1
n+1q) for some t ∈ N, f, g ∈ Ft, and p, q ∈ L1. Let q′ ∶= 1

n+1p +
n

n+1q. Note that

n−1
n
p + 1

n
q′ = n

n+1p +
1

n+1q and, hence, it follows from assumptions that f ∣( 1
n
p + n−1

n
q′) ≿ g∣q′.

Now, observe that q′ is the midpoint between 1
n
p + n−1

n
q′ and q. Therefore, by Memory-

Consumption Tradeoff Consistency, f ∣q′ ≿ f ∣q, which completes the inductive step.

Now, the claim of the lemma follows from (14) by taking the limit n → ∞. Indeed, fix

arbitrary t ∈ N, f, g ∈ Ft, and p, q ∈ L1. If f ∣p ≻ g∣p then, by continuity, for all sufficiently

large n we have f ∣p ≻ g∣(n−1
n
p + 1

n
q), which gives f ∣( 1

n
p + n−1

n
q) ≻ g∣q by the previous step

and, in the limit as n → ∞, f ∣q ≿ g∣q. If g∣p ≻ f ∣p, then the claim similarly holds. By the

symmetry of the claim with respect to renaming p and q, the only remaining case is f ∣p ∼ g∣p
and f ∣q ∼ g∣q, in which the claimed equivalence holds, as well.

Lemma 9. Let X be a connected separable topological space, Y a convex subset of a sepa-

rable topological vector space, and ≽ a continuous complete preorder on X × Y that has the

following properties:

(i) There exist x,x′, x0 ∈ X and y, y′, y0 ∈ Y such that (x, y0) ≻ (x′, y0) and (x0, y) ≻
(x0, y′).
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(ii) For all x,x′ ∈X and y, y′ ∈ Y , (x, y) ≽ (x′, y)⇒ (x, y′) ≽ (x′, y′).
(iii) For all x,x′ ∈X and y, y′ ∈ Y , (x, y) ≽ (x, y′)⇒ (x′, y) ≽ (x′, y′).
(iv) For all x,x′ ∈X and y, y′ ∈ Y , (x, y) ≽ (x′, 1

2
y + 1

2
y′)⇔ (x, 1

2
y + 1

2
y′) ≽ (x′, y′).

Then, there exist a continuous function Ux ∶ X → R and a continuous affine function

Uy ∶ Y → R such that

(x, y) ≽ (x′, y′) ⇔ Ux(x) +Uy(y) ≥ Ux(x′) +Uy(y′).
Proof. To verify the conditions of Wakker (1989, Th. III.4.1), observe that the assumptions

of the lemma immediately guarantee the existence of two essential coordinates and that the

coordinate independence property is satisfied. It remains to show that the hexagon condition

holds. Indeed, suppose that x1, y1, v1 ∈ X and a2, b2, c2 ∈ Y are such that (y1, a2) ≍ (x1, b2)24
and (v1, a2) ≍ (y1, b2) ≍ (x1, c2). Let d = 1

2
a2 +

1
2
c2. We claim that (x1, d) ≍ (x1, b2). If

(y1, a2) ≻ (x1, d) then, by (iv), (y1, d) ≻ (x1, c2). By transitivity, (x1, b2) ≻ (x1, d) and

(y1, d) ≻ (y1, b2), a contradiction with (iii). The situation (x1, d) ≻ (y1, a2) similarly leads to

a contradiction. We conclude that (x1, d) ≍ (y1, a2) ≍ (x1, b2). By the assumption and (iii),

we have (v1, a2) ≍ (y1, b2) ≍ (y1, d). Then, (v1, d) ≍ (y1, c2) by (iv) and (v1, d) ≍ (v1, b2)
by (iii), which gives by transitivity (v1, b2) ≍ (y1, c2), and the hexagon condition is proven.

Now, we can apply Wakker (1989, Th. III.4.1) to obtain that there exist nonconstant

continuous functions Ux ∶ X → R and Uy ∶ Y → R such that

(x, y) ≽ (x′, y′) ⇔ Ux(x) +Uy(y) ≥ Ux(x′) +Uy(y′). (15)

It remains to show that Uy must be affine. Indeed, (15) and property (iv) imply that, for

any y, y′ ∈ Y ,

Uy(y) −Uy(12y + 1
2
y′) ≥ Ux(x′) −Ux(x)⇔ Uy(12y + 1

2
y′) −Uy(y′) ≥ Ux(x′) −Ux(x)

for all x,x′ ∈ X .

(16)

Fix an arbitrary [a, b] ⊆ rangeUx, where a < b, and let ε ∈ (0, b−a). Then, the arbitrariness
of x and x′ in (16) gives that, for any y, y′ ∈ Y such that ∣Uy(y) −Uy(y′)∣ ≤ ε,

Uy(y) −Uy(12y + 1
2
y′) = Uy(12y + 1

2
y′) −Uy(y′).

24Here, we use ≍ to denote the symmetric part of ≽.
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Applying it repeatedly, this equation can be extended to all y, y′ ∈ Y . Moreover, it can be

re-written as Uy(12y+ 1
2
y′) = 1

2
Uy(y)+ 1

2
Uy(y′). By continuity, it implies that Uy is affine.

Proof of Theorem 1. Only if part. Suppose that ≿ is a complete preorder on L that sat-

isfies Axioms (A1)–(A7). Let zt for t ∈ N denote an element of Ft such that zt = (0,0, . . . ,0).
Step 1. On the subset L1 ⊂ L, ≿ admits an expected utility representation: there exists

a continuous and bounded function u ∶ C → R such that p ≿ q ⇔ Ep[u] ≥ Eq[u] for
all p, q ∈ L1. Let u be normalized such that u(0) = 0. Moreover, Nondegeneracy directly

implies that rangeu admits both positive and negative values.

Step 2. By Independence, Continuity (item (2)), and Nondegeneracy, we have that the

conditions of the mixture space theorem (?) are satisfied and, therefore, there exists an affine

function V ∶ L→ R that represents ≿ on L: P ≿ Q⇔ V (P ) ≥ V (Q) for all P,Q ∈ L. By the

uniqueness of the expected utility representation on L1, it must be that the restriction of V

to L1 is a positive affine transformation of the mapping p ↦ Ep[u] for p ∈ L1. Normalizing

if necessary, assume that V (p) = Ep[u] for all p ∈ L1. Note that, by the continuity axiom,

V must be continuous when restricted to convex sets Lt for all t ∈ N.

Step 3. Risk Preference Consistency and Stationarity imply that, for all f, g ∈ F and

p, q ∈ L1,

f ∣p ≿ f ∣q ⇔ g∣p ≿ g∣q ⇔ p ≿ q.

Hence, by the uniqueness of the expected utility representation, it must be that for all t ∈ N

there exist αt ∶ Ft → R and βt ∶ Ft → R++ such that

V (f ∣p) = αt(f) + βt(f)Ep[u] for all f ∈ Ft and p ∈ L1.

Step 4. This step establishes an alternative representation for ≿ restricted to Ft ×L1 for

all t ∈ N: we claim that there exist continuous functions Wt ∶ Ft → R such that

f ∣p ≿ g∣q ⇔ Wt(f) +Ep[u] ≥Wt(g) +Eq[u]
for all f, g ∈ Ft and p, q ∈ L1. Indeed, Nondegeneracy and Stationarity, Risk Preference

Consistency, Lemma 8, and Memory-Consumption Tradeoff Consistency make the condi-

tions of Lemma 9 hold. Therefore, there exist continuous Wt ∶ Ft → R and continuous affine

W ′
t ∶ L1 → R such that f ∣p ≿ g∣q ⇔ Wt(f) +W ′

t (p) ≥ Wt(g) +W ′
t (q) for all f, g ∈ Ft and
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p, q ∈ L1. Then, as follows from Risk Preference Consistency, p ≿ q⇔W ′
t (p) ≥W ′

t (q) for all
p, q ∈ L1. Hence, by the uniqueness of the expected utility representation, it must be that,

for all t ∈ N, W ′
t are positive affine transformations of our representation of ≿ restricted to

L1 obtained in Step 1. Then, normalizing if necessary, we can assume that, for all t ∈ N,

W ′
t (p) = Ep[u] for all p ∈ L1.
Step 5. For all t ∈ N, the range of the mapping (f, p) ↦ Wt(f) + Ep[u] is convex, and,

therefore, there must exist continuous and strictly increasing functions ζt ∶ R→ R such that

V (f ∣p) = αt(f) + βt(f)Ep[u] = ζt(Wt(f) + Ep[u]) for all f ∈ Ft and p ∈ L1. Observe that,

for any t ∈ N and any fixed f ∈ Ft, the left-hand side of this equality is an affine function

of p ∈ L1. Hence, ζt must be positive affine functions for all t ∈ N: ζt(t) = At +Btt for some

At ∈ R and Bt ∈ R++. If we let W̃t(f) ∶= At +BtWt(f) for all t ∈ N and f ∈ Ft, we obtain:

V (f ∣p) = W̃t(f) +BtEp[u] for all t ∈ N, f ∈ Ft, and p ∈ L1. (17)

Step 6. The Impatience axiom asserts that (c) ≻ (0, c) ≻ (0) for all c ∈ C such that

(c) ≻ (0). By taking the limit c→ 0 in the above and using continuity, we obtain (0,0) ∼ (0).
Using Stationarity and mathematical induction, it can be seen that zt ∼ (0) and V (zt) = 0;
in turn, by (17), we also have W̃t(zt) = 0.

Let β ∶= B1 and note that Impatience implies that β < 1. For any c ∈ C, let p ∈ L1 be defined

as p ∶= βδc + (1 − β)δ0 and observe that V (0, c) = βu(c) = Ep[u] = V (p) by (17). For any

t ∈ N, Stationarity gives that zt∣0∣c ∼ zt∣p and, hence, by (17), Bt+1u(c) = BtEp[u] = Btβu(c).
Since c was arbitrarily chosen, we have that Bt = βt for all t ∈ N and

V (f ∣p) = W̃t(f) + βt
Ep[u] for all t ∈ N, f ∈ Ft, and p ∈ L1. (18)

This equation holds also for t = 0 by letting W̃0 ∶= 0.

Step 7. Let M0 ∶ F0 → R be zero and Mt ∶ Ft → R for t ∈ N be defined as

Mt(ft−1, . . . , f0) ∶= β−t(W̃t(f0, . . . , ft−1) − V (f0, . . . , ft−1)).
Using this definition in (18), we obtain that, for all t ∈ N and f ∈ Ft+1,

V (f0, . . . , ft−1, ft) = V (f0, . . . , ft−1) + βtMt(ft−1, . . . , f0) + βtu(ft).
Then, for all t ∈ N ∪ {0},

V (f0, . . . , ft) = t

∑
τ=0

βτ[u(fτ) +Mτ(fτ−1, . . . , f0)] for all f ∈ Ft+1.
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Step 8. We clam that, for all t ∈ N and P ∈ L, V (zt∣P ) = βtV (P ). Indeed, fix t ∈ N, and
observe that, by Stationarity, both P ↦ V (P ) and P ↦ V ((0)∣P ) are representations of

the restriction of ≿ to Lt. Hence, by uniqueness of affine representations, there exists b > 0

such that V ((0)∣P ) = bV (P ) for all P ∈ Lt. As follows from (18), it must be that b = β. The

claim now follows by induction. Note that, by (18), we also have W̃ (zt∣f) = βtW̃ (f) for all
t ∈ N and f ∈ F .

Step 9. Now, we can define M ∶ C∞0 → R for all h ∈ C∞0 by letting M(h) = Ml(h) for an
arbitrary l ∈ N such that hτ = 0 for all τ ≥ l. (Note that, by the result of the previous step,

this definition does not depend on the choice of l.) Then, for all t ∈ N ∪ {0},
V (f0, . . . , ft) = t

∑
τ=0

βτ[u(fτ) +M(fτ−1, . . . , f0,0,0, . . .)] for all f ∈ Ft+1.

Representation (3) is now proven. Note that M is continuous since all Ml for l ∈ N are

continuous due to the continuity of V and W̃l.

If part. Suppose that ≿ admits a utility representation via a function V as specified

in (3). We next show that the axioms hold.

Stationarity. Let 0 ∈ C denote an element that is mapped by u into 0 ∈ R. Then, equa-

tion (3) gives V ((0)∣P ) = βV (P ) for all P ∈ L, which implies that (0)∣P ≿ (0)∣Q⇔ P ≿ Q

for all P,Q ∈ L.

Impatience. If (c) ≻ (0) for some c ∈ C, then, by (3), u(c) > 0. Then, V (c) = u(c) > βu(c) =
V (0, c) > 0.

Independence. Follows directly from the representation.

Risk Preference Consistency. For any f, g ∈ F and p, q ∈ L1, we have by (3) that f ∣p ≿
f ∣q⇔ Ep[u] ≥ Eq[u]⇔ g∣p ≿ g∣q.

Memory-Consumption Tradeoff Consistency. Define S ∶ Ft → R as

S(f) ∶= t−1

∑
τ=0

βτ[u(fτ) +M(fτ−1, . . . , f0,0,0, . . .)] + βτM(fτ−1, . . . , f0,0,0, . . .).
Then, for any t ∈ N, f, g ∈ Ft, and p, q ∈ L1, we have by (3) that

f ∣p ≿ g∣(1
2
p + 1

2
q) ⇔ S(f) + βtEp[u] ≥ S(g) + βt (1

2
Ep[u] + 1

2
Eq[u]) ⇔

S(f) − S(g) ≥ βt (1
2
Eq[u] − 1

2
Ep[u]) ⇔

S(f) + βt (1
2
Ep[u] + 1

2
Eq[u]) ≥ S(g) + βtEq[u] ⇔ f ∣(1

2
p + 1

2
q) ≿ g∣q.

33

Date: 2018-07-09 14:54:50 Revision: 3abf17a



Continuity. For each t ∈ N, the mapping Ft → R defined as f ↦ ∑t−1
τ=0 β

τ[u(fτ) +
M(fτ−1, . . . , f0,0, . . .)] is continuous by the continuity of u and M ; hence, V defined by (3)

is continuous on Lt, which establishes the first part of the axiom. The second part holds

immediately.

Nondegeneracy. The first part holds directly since the range of u take both positive and

negative values.

Proof of Proposition 2. Let (β,u,M) and (β̂, û, M̂) represent the same binary relation

≿ on L as in Theorem 1. By Wakker (1989, Obs. III.6.6′), there exist λ > 0 and d, d′ ∈ R such

that û = λu+d, and M̂ = λM+d′. As required by Theorem 1, it must be that u(0) = 0 = û(0).
Thus, d = 0 = d′, implying that û = λu and M̂ = λM . Moreover, it clearly must be that β = β̂

for the two triples to represent the same binary relation. The sufficiency of the conditions

can be directly verified.

B Proofs of Theorem 3 and Related Results

We start with a preliminary lemma that will be useful to prove Theorem 3.

Lemma 10. Suppose that a complete preorder ≿ on L satisfies Axioms (A1)–(A7), and let

(β,u,M) be its representation as in Theorem 1. Then, for all z ∈ C and k > 0,

(f ∣0) ≿ 1

k + 1
f +

k

k + 1
(f ∣z) ⇔ M(fℓ(f)−1, . . . , f0,0, . . .) ≥ ku(z).

Proof. Let t ∶= ℓ(f). Using representation (3), we obtain

(f ∣0) ≿ 1

k + 1
f +

k

k + 1
(f ∣z) ⇔

V (f) + βtM(ft−1, . . . , f0,0, . . .) ≥
1

k + 1
V (f) + k

k + 1
[V (f) + βtu(z) + βtM(ft−1, . . . , f0,0, . . .)] ⇔

M(ft−1, . . . , f0,0, . . .) ≥ ku(z).

Proof of Theorem 3. Only if part. Suppose that ≿ is a complete preorder on L that

satisfies the specified axioms.
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Step 1. Let V ∶ L → R be a utility representation of ≿ as in (3) with β, u, and M as

specified in Theorem 1. Let I ∶= {M(ft−1, . . . , f0,0, . . .) ∣ f ∈ Ft, t ∈ N} and note that I is a

bounded interval of R that contains 0 bacause M is bounded and M(0,0, . . .) = 0. Define

ψ ∶ I×C → I as follows: For r ∈ R and c ∈ C, ψ(r, c) ∶=M(c, ft−1, . . . , f0,0, . . .), where t = ℓ(f)
and f ∈ F is an arbitrary act such that M(ft−1, . . . , f0,0, . . .) = r.

Step 2. We claim that, in the above definition of ψ, the value of ψ(r, c) is independent

of the choice of f . Indeed, fix an arbitrary c ∈ C, and let f ∈ F and f ′ ∈ F be such that

M(ft−1, . . . , f0,0, . . .) = M(f ′t′−1, . . . , f ′0,0, . . .), where t = ℓ(f) and t′ = ℓ(f ′). Let f̂ ∈ Ft−1

and f̂ ′ ∈ Ft′−1 be the truncated streams: f = f̂ ∣ft−1 and f ′ = f̂ ′∣f ′t−1. We have

M(ft−1, . . . , f0,0, . . .) ≥ ku(z) ⇔ M(f ′t′−1, . . . , f ′0,0, . . .) ≥ ku(z) for all z ∈ C and k > 0,

and, therefore, by Lemma 10,

f̂ ∣ft−1 ≿m−k z ⇔ f̂ ′∣f ′t−1 ≿m−k z for all z ∈ C and k > 0.

By Axiom A8, we have

f ∣c ≿m−k z ⇔ f ′∣c ≿m−k z for all z ∈ C and k > 0.

Applying Lemma 10 again, and since z and k are arbitrary, we conclude thatM(c, ft−1, . . . ,
f0,0, . . .) =M(c, f ′t′−1, . . . , f ′0,0, . . .).

Step 3. Now, we show that rangeψ = I. Let r ∈ I be chosen arbitrarily. By definition,

r = M(ft−1, . . . , f0,0, . . .) for some t ∈ N and f ∈ Ft. Let r̃ = M(ft−2, . . . , f0,0, . . .), and
observe that ψ(r̃, ft−1) = r by the result of the previous step. Hence, r ∈ rangeψ.

Step 4. Finally, we prove that ψ is continuous. Suppose, by contradiction, that ψ is not

continuous: There exist sequences {rn}∞n=1 in I and {cn}∞n=1 in C such that rn → r ∈ I,

cn → c ∈ C, ψ(rn, cn) → K ∈ R ∪ {−∞,+∞} as n → ∞, but K ≠ ψ(r, c). Passing to a

subsequence, we can assume that the sequence {rn}∞n=1 is either increasing or decreasing.

Note that I = ⋃∞t=1 It, where It = {M(ft−1, . . . , f0,0, . . .) ∣ f ∈ Ft}. Recall that M is

continuous; for each t ∈ N, Ft is connected and, hence, It is an interval; moreover, 0 ∈ It.

Therefore, we can find some t ∈ N such that r ∈ It and rn ∈ It for all n ∈ N. Let f (1) and

f in Ft be such that M (f (1)t−1 , . . . , f
(1)
0 ,0, . . .) = r1 and M (ft−1, . . . , f0,0, . . .) = r. For n ∈ N,

n ≥ 2, let f (n) ∶= (1 − γn)f (1) + γnf , where, for each n ∈ N, n ≥ 2, γn is chosen such that
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M (f (n)t−1 , . . . , f
(n)
0 ,0, . . .) = rn, which is possible by continuity. Passing to a subsequence,

{γn}∞n=1 converges, and, hence, {f (n)}∞n=1 converges to some f (∞) ∈ Ft. Observe that r =

limn→∞ rn = limn→∞M (f (n)t−1 , . . . , f
(n)
0 ,0, . . .) = M (f (∞)t−1 , . . . , f

(∞)
0 ,0, . . .) by the continuity

of M . By the result of Step 2, we have ψ(rn, cn) =M (cn, f (n)t−1 , . . . , f
(n)
0 ,0, . . .) for all n ∈ N

and ψ(r, c) = M (c, f (∞)t−1 , . . . , f
(∞)
0 ,0, . . .); by the continuity of M , we have limn→∞M (cn,

f
(n)
t−1 , . . . , f

(n)
0 ,0, . . .) =M (c, f (∞)t−1 , . . . , f

(∞)
0 ,0, . . .); and obtain limn→∞ψ(rn, cn) = ψ(r, c), a

contradiction to our assumption.

If part. Assume that there exist a scalar β ∈ (0,1), a function u ∶ C → R, and a function

ψ ∶ I × C → I for some interval I ⊆ R as described in the theorem such that V (P ) =
∑f∈suppP P (f)V (f) for all P ∈ L, where V (f) is computed as in (7).

LetM ∶ C∞0 → R be defined as follows. For h = (h0, h1, . . . , ht−1,0, . . .) ∈ C∞0 , letm−1 = 0; for

τ = 0, . . . , t − 1, mτ = ψ(mτ−1, hτ); and, finally, M(h) =mt−1. Note that in this construction

the value of M(h) does not depend on the choice of t as long as hτ = 0 for all τ ≥ t.

Now, we establish the continuity of M . Suppose that a net {h(α)}α converges to some

h in C∞0 . Hence, for some T ∈ N such that ht = 0 for all t ≥ T , there exist an index α0

such that h
(α)
t = 0 for all α ≥ α0 and t ≥ T , and sup0≤t≤T ∣ht − h(α)t ∣ converges to zero. Then,

M (h(α)) = ψ (ψ (. . . ψ (0, h(α)T−1) , . . . , h(α)1 ) , h(α)0 )→M(h) = ψ(ψ(. . . ψ (0, hT−1) , . . . , h1), h0)
because of the continuity of ψ.

Clearly,M satisfies the normalization condition and it is bounded because ψ is bounded.

Thus, Axioms (A1)–(A7) hold by Theorem 1. It remains to show that Axiom (A8) holds,

as well.

Suppose that f, g ∈ F and x, y ∈ C are such that

f ∣x ≿m−k z ⇔ g∣y ≿m−k z for all z ∈ C and k > 0.

By Lemma 10, this gives

M(x, fℓ(f)−1, . . . , f0,0, . . .) ≥ ku(z) ⇔ M(y, gℓ(g)−1, . . . , g0,0, . . .) ≥ ku(z) ∀z ∈ C, k > 0.
Due to the arbitrariness of z and k and the fact that rangeu takes both positive and

negative values, it must be that M(x, fℓ(f)−1, . . . , f0,0, . . .) =M(y, gℓ(g)−1, . . . , g0,0, . . .). Fix
an arbitrary c ∈ C. Then, M(c, x, fℓ(f)−1, . . . , f0,0, . . .) = ψ(M(x, fℓ(f)−1, . . . , f0,0, . . .), c) =
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ψ(M(y, gℓ(g)−1, . . . , g0,0, . . .), c) =M(c, y, gℓ(g)−1, . . . , g0,0, . . .). By Lemma 10 again,

f ∣x∣c ≿m−k z ⇔ g∣y∣c ≿m−k z for all z ∈ C and k > 0.

Proof of Proposition 4. We will prove the necessity by using the fact that Theorem 3

is a special case of the general representation in Theorem 1. Let (β,u, I,ψ) and (β̂, û, Î , ψ̂)
represent the same binary relation ≿ on L as in Theorem 3.

Define M ∶ C∞0 → R recursively via ψ in the same way as in the proof of the “if” part of

Theorem 3, and, similarly, M̂ via ψ̂. As pointed out in that proof, such functionsM and M̂

satisfy the properties of Theorem 1. By the uniqueness result for the general representation

(Proposition 2), β = β̂ and there exists λ > 0 such that û = λu and M̂ = λM . Now, fix

arbitrary r ∈ Î and c ∈ C. Let t ∈ N and f ∈ Ft be such that r = M̂(ft−1, . . . , f0,0, . . .), and
note that r = λM(ft−1, . . . , f0,0, . . .). Then, by the construction of the functions M and

M̂ , we have M̂(c, ft−1, . . . , f0,0, . . .) = ψ̂(r, c) and M(c, ft−1, . . . , f0,0, . . .) = ψ ( 1λr, c), which
gives ψ̂(r, c) = λψ ( 1

λ
r, c).

The sufficiency of the conditions can be verified directly.

Proof of Proposition 5. Part (i). Suppose that ≿ satisfies Monotonicity in the Past

Memory. Let m1,m2 ∈ I such that m1 ≥ m2. By construction of I, there exist f, g ∈ F/F0

such that m1 = M(ft−1, . . . , f0,0, . . .) and m2 = M(gt′−1, . . . , g0,0, . . .), where t = ℓ(f) and
t′ = ℓ(g). Then, M(gt′−1, . . . , g0,0, . . .) ≥ ku(z) implies M(ft−1, . . . , f0,0, . . .) ≥ ku(z) for all
z ∈ C and k > 0, which, by Lemma 10, is equivalent to f R≿ g. By Monotonicity in the Past

Memory, we have (f ∣c) R≿ (g∣c) for all c ∈ C. Using Lemma 10, again, and the Markovian

representation, it follows that ψ(m2, c) ≥ ku(z)⇒ ψ(m1, c) ≥ ku(z) for all z ∈ C and k > 0.

Since z and k are arbitrary, we conclude that ψ(m1, c) ≥ ψ(m2, c).
Part (ii). Suppose that ≿ satisfies Monotonicity in the Current Consumption. Let m ∈ I

and c1, c2 ∈ C such that u(c1) ≥ u(c2). Then, there exists f ∈ F/F0 such that m =

M(ft−1, . . . , f0,0, . . .) where t = ℓ(f). Since (c1) ≿ (c2), we have (f ∣c1) R≿ (f ∣c2). By

Lemma 10 and the Markovian representation, ψ(m,c2) ≥ ku(z) ⇒ ψ(m,c1) ≥ ku(z) for
all z ∈ C and k > 0. Since z and k are arbitrary, we conclude that ψ(m,c1) ≥ ψ(m,c2).

The sufficiency of the conditions for both parts can be verified directly.
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Proof of Proposition 6. Part (a). Assume that ≿2 exhibits longer effects of positive mem-

ory. Let m ∈ I1 ∩ I2 ∩R+. By construction of I1 and I2, we can find f, g ∈ F/F0 such that

m =M1(ft−1, . . . , f0,0, . . .) =M2(gt′−1, . . . , f0,0, . . .) ≥ 0, where t = ℓ(f) and t′ = ℓ(g). Then,
M1(ft−1, . . . , f0,0, . . .) ≥ ku(z) ⇔ M2(gt′−1, . . . , g0,0, . . .) ≥ ku(z) for all z ∈ C and k > 0.

That is, f ≿1I≿2 g R≿2 (0). By Definition 5a, we have that (g∣0) ≿2R≿1 (f ∣0) R≿1 (0). Using
the Markovian representation, the latter pattern is equivalent to

0 ≥ u(z)⇒ ψ1(m,0) ≥ ku(z)⇒ ψ2(m,0) ≥ ku(z) for all z ∈ C and k > 0.

Since z and k are arbitrary, we conclude that ψ2(m,0) ≥ ψ1(m,0) ≥ 0.
Part (b). Assume ≿2 exhibits longer effects of negative memory. Let m ∈ I1∩I2∩R−. Sim-

ilarly to the above argument, we can find f, g ∈ F/F0 such that m =M1(ft−1, . . . , f0,0, . . .) =
M2(gt′−1, . . . , f0,0, . . .) ≤ 0. Thus, we have that (0) R≿1 f ≿1I≿2 g, and Definition 5b implies

that (0) R≿1 (f ∣0) ≿1R≿2 (g∣0). Using the Markovian representation, the latter pattern is

equivalent to

ψ2(m,0) ≥ ku(z)⇒ ψ1(m,0) ≥ ku(z)⇒ 0 ≥ u(z) for all z ∈ C and k > 0.

Thus, it must be that 0 ≥ ψ1(m,0) ≥ ψ2(m,0).
The converse implication for both parts is routine.

Proof of Proposition 7. Part (a). Assume that positive memory has stronger effects for

≿2 in comparison to ≿1. Let m ∈ I1 ∩ I2 ∩ R+. By construction of I1 and I2, we can find

f, g ∈ F/F0 such thatm =M1(ft−1, . . . , f0,0, . . .) =M2(gt′−1, . . . , f0,0, . . .) ≥ 0, where t = ℓ(f)
and t′ = ℓ(g). Then, f ≿1I≿2 g R≿2 (0).

Pick arbitrary r ∈ c+1(m) and s ∈ c+2(m). If r > s the conclusion immediately holds. Thus,

assume s ≥ r. By definition of c+i (m) for i = 1,2, there exist x, y ∈ C such that u(x) = r,
u(y) = s, ψ1(m,x) ≥ m, and ψ2(m,y) ≥ m. This means that (y) ≿2 (x), (f ∣x) R≿1 f , and
(g∣y)R≿2 g. The conditions of part (a) of Definition 6 are therefore satisfied. It follows that

(f ∣y) R≿1 f and (g∣x) R≿2 g. Using the representation, the latter patterns are equivalent

to have ψ1(m,y) ≥ m, and ψ2(m,x) ≥ m, respectively. We conclude that s ∈ c+1(m) and
r ∈ c+2(m), that is, c+1(m) dominates c+2(m) in the strong set order. The proof that c̊+1(m)
dominates c̊+2(m) is analogous and, hence, we omit it.
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Vice versa, assume that c+1(m) and c̊+1(m) dominate c+2(m) and c̊+2(m) for all m ∈ I1 ∩

I2 ∩R+. Let f, g ∈ F/F0 such that f ≿1I≿2 g R≿2 (0). Using the representation, this means

that M1(ft−1, . . . , f0,0, . . .) =M2(gt′−1, . . . , f0,0, . . .) =m ≥ 0 for some m ∈ I1∩I2 ∩R+, where

t = ℓ(f) and t′ = ℓ(g). Moreover, suppose that (f ∣x) R≿1 f , (g∣y) R≿2 g, and (y) ≿2 (x) ≿2
(0) for some x, y ∈ C. Again, by the representation, we have ψ1(m,x) ≥ m, ψ2(m,y) ≥ m,

and clearly u(y) ≥ u(x) ≥ 0. Thus, there exist r, s ∈ R+ such that u(x) = r, u(y) = s, and
r ∈ c+1(m), s ∈ c+2(m). Since c+1(m) dominates c+2(m), it follows that s ∈ c+1(m) and r ∈ c+2(m).
By definition of c+i (m), we conclude that ψ1(m,y) ≥m and ψ2(m,x) ≥m. Similarly, it can

be shown that part (ii) of Definition 6 follows from the fact that c̊+1(m) dominates c̊+2(m).
Part (b). The proof is similar to the proof of Part (a). For the sake of completeness,

we next prove the “Only If” direction. Assume that negative memory has stronger effects

for ≿2 in comparison to ≿1. Let m ∈ I1 ∩ I2 ∩ R−. Then we can find f, g ∈ F/F0 such that

m =M1(ft−1, . . . , f0,0, . . .) =M2(gt′−1, . . . , f0,0, . . .) ≤ 0. Then, (0)R≿1 f ≿1I≿2 g.
Let r ∈ c−1(m) and s ∈ c−2(m). Without loss of generality, assume r ≥ s. By definition

of c−i (m) for i = 1,2, there exist x, y ∈ C such that u(x) = r, u(y) = s, ψ1(m,x) ≤ m, and

ψ2(m,y) ≤ m. This means that (x) ≿2 (y), f R≿1 (f ∣x), and g R≿2 (g∣y). By part (b) of

Definition 6, it follows that f R≿1 (f ∣y) and g R≿2 (g∣x). Using the representation, we have

ψ1(m,y) ≤m, and ψ2(m,x) ≤m. Thus, s ∈ c−1(m) and r ∈ c−2(m), that is, c−2(m) dominates

c−1(m) in the strong set order. Similarly, it can be shown that c̊−2(m) dominates c̊−1(m).
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