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Abstract We present an axiomatic model of preferences over menus that is moti-
vated by three assumptions. First, the decision maker is uncertain ex ante (i.e., at
the time of choosing a menu) about her ex post (i.e., at the time of choosing an
option within her chosen menu) preferences over options, and she anticipates that this
subjective uncertainty will not resolve before the ex post stage. Second, she is averse
to ex post indecisiveness (i.e., to having to choose between options that she cannot
rank with certainty). Third, when evaluating a menu she discards options that are
dominated (i.e., inferior to another option whatever her ex post preferences may be)
and restricts attention to the undominated ones. Under these assumptions, the decision
maker has a preference for commitment in the sense of preferring menus with fewer
undominated alternatives. We derive a representation in which the decision maker’s
uncertainty about her ex post preferences is captured by means of a subjective state
space, which in turn determines which options are undominated in a given menu, and
in which the decision maker fears, whenever indecisive, to choose an option that will
turn out to be the worst (undominated) one according to the realization of her ex post
preferences.

Keywords Opportunity sets · Subjective uncertainty · Indecisiveness · Dominance

E. Danan (B) · A. Guerdjikova
THEMA, Université de Cergy-Pontoise, 33 boulevard du Port, 95000 Cergy-Pontoise, France
e-mail: eric.danan@u-cergy.fr

A. Guerdjikova
e-mail: ani.guerdjikova@u-cergy.fr

A. Zimper
School of Economic and Business Sciences, University of the Witwatersrand,
Johannesburg, South Africa
e-mail: alexander.zimper@wits.ac.za

123



2 E. Danan et al.

JEL Classification D81

1 Introduction

Consider a two-stage decision situation. In the first stage, the decision maker has
to choose a menu (or opportunity set). In the second stage, she has to choose an
option from this menu. We refer to these two stages as the ex ante and ex post stage,
respectively. We assume that the decision maker is uncertain ex ante about her ex post
preferences over options. Standard models in the literature on opportunity sets use this
assumption in order to motivate a desire for flexibility (Kreps 1979; Nehring 1999;
Dekel et al. 2001, 2007a; Ozdenoren 2002; Epstein et al. 2007). According to these
models, larger menus can never be worse than smaller ones when a decision maker
expects to learn her ex post preferences before actually having to choose an option. In
contrast to these approaches, we consider a decision maker who anticipates that her
uncertainty about her ex post preferences will only resolve after she will have chosen
an option. Such a decision maker will find herself at the ex post stage, at least for some
menus, in a situation of indecisiveness, i.e., of having to choose an option without
being certain which option she prefers. We assume that the decision maker is averse to
such situations of indecisiveness and, therefore, prefers smaller menus to larger ones,
to the extent that smaller menus enable her to avoid these situations.

As an illustrative example, consider Bethy, who is a manager of a small division in
a large company. She is faced with the problem of assigning the execution of a project
to one of the employees. Right now she can only choose among the employees in her
division, whom she knows well and has previously observed in similar projects. She is
rather certain that Alan would be the best person to entrust with the project. However,
just before Bethy can make the decision, the CEO of the company contacts her and
suggests that she now has the possibility to pick an employee not just from her own
division, but from the entire company staff. Bethy has only limited knowledge of the
staff outside her division. In particular, she knows that Bob and Chris are well suited
to execute the project, but she finds these two candidates hard to compare: e.g., Bob
would be excellent on the financial side of the project, but Chris would do better than
Bob when it comes to marketing. Bethy knows that these two dimensions are impor-
tant for the success of the project, but the current situation makes it difficult to foresee
which one will be the most important. She is faced with a hard choice: she has to make
an important decision (for the company, for her career, and that of the person who will
be in charge of the project), and take full responsibility for this decision in front of
the CEO, without being able to confidently go for either one of the possible options.
In fact, she would have much preferred sticking to her division, which would have
avoided her this situation of indecisiveness altogether. Thus, she would be willing to
forego candidates that are potentially better than Alan (in fact, she may even be sure
that, e.g., Chris is superior to Alan in all regards) in order to avoid the pain of having
to choose in a situation of indecisiveness.1

1 In this sense, the decision maker who conforms to our theory prefers to avoid taking responsibility for
her decisions. This interpretation was suggested to us by Klaus Nehring.
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Indecisiveness aversion and preference for commitment 3

A menu, in this example, is a set of employees from which Bethy has to choose
whom to assign the execution of the project. For simplicity, let us assume that Alan
(A), Bob (B), and Chris (C) are the only available employees in the company, so
menus are nonempty subsets of {A, B, C}. Bethy has preferences over these menus.
That she prefers picking an employee from her division only rather than from the
whole company means that she prefers the singleton menu {A} (she has to choose
Alan) to the grand menu {A, B, C} (she can choose Alan, Bob, or Chris).

This preference pattern can be captured by means of the following representation.
Suppose Bethy envisions two possible scenarios: the most important dimension of the
project may be either finance ( f ) or marketing (m). In each scenario s = f, m, she is
able to come up with a numerical evaluation us : {A, B, C} → R of all employees.
Namely, these evaluations are given by the following table:

A B C
f 5 8 6
m 5 3 7

Thus, the set U = {u f , um} is a subjective state space capturing Bethy’s ex ante
uncertainty about her ex post preferences over candidates. Note that Alan is clearly
“dominated” by Chris, no matter what subjective state eventually realizes. Hence, even
though Bethy does not expect to know which dimension of the project turns out to be
the most important one before she has to choose an employee, she knows ex ante that
Alan is by no means the optimal employee within the grand menu. Bob and Chris,
on the other hand, cannot be ranked in this manner, as which one is more valuable
depends on which subjective states realizes. Hence she anticipates ex ante that the
grand menu will leave her in a situation of indecisiveness between Bob and Chris.
In general, when evaluating a menu, Bethy first discards all dominated employees
and restricts attention to undominated ones. Thus, within the grand menu {A, B, C}
she restricts attention to the submenu {B, C} (and within the singleton menu {A}
she trivially restricts attention to {A} itself). Moreover, being indecisiveness averse,
Bethy imagines that no matter which subjective state realizes, she will always end
up choosing the worst possible (undominated) employee. This yields the following,
subjective state-contingent evaluation of menus:

{A} {A, B, C}
f 5 6
m 5 3

Finally, Bethy obtains an ex ante numerical evaluation of a menu by aggregating the
two subjective state-contingent evaluations through some increasing function from R

2

to R. If, for example, she simply sums up the two evaluations, then the singleton menu
{A} is more valuable than the grand menu {A, B, C} (10 > 9).

In this article, we take as primitive a preference relation over menus of lotteries and
axiomatize the representation described above. Our model extends previous work by
Guerdjikova and Zimper (2008), who model the trade-off between a desire for com-
mitment arising from the presence of incomparable options and a desire for flexibility
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arising from the possibility that nature may eliminate some options between the
ex ante and ex post stages. The extension is only partial since we focus on their desire
for flexibility motive, thus ignoring their desire for flexibility motive. On the other
hand, we axiomatize a full-fledged representation of preferences over menus whereas
their main result only axiomatizes a characterization of the preference maximizing
menu. Moreover, we work with a larger class of menus than they do.

Our representation exhibits a preference for commitment, once one restricts atten-
tion to undominated options. In other words, the decision maker always prefers a
menu with a smaller set of undominated options. It is noteworthy that our representa-
tion does not identify which option will eventually be chosen by the decision maker
(not even contingently on the subjective state since, in fact, the decision maker does
not know the subjective state at the time of choosing an option). Thus, our notion
of indecisiveness aversion arises from the fact of having to choose without knowing
one’s own preferences rather than from the outcome of this choice. In this regard,
our model differs from models of temptation (Gul and Pesendorfer 2001; Dekel et al.
2009), regret (Sarver 2008), costly contemplation (Ergin and Sarver 2010), or thinking
aversion (Ortoleva 2010).

The article is organized as follows. Section 2 presents the general setup (menus and
preferences). Section 3 introduces and discusses a concept that is central to our anal-
ysis: a dominance relation over options (which is usual in the literature on preference
for flexibility but has a slightly different interpretation in our model). Section 4 defines
our representation concept and highlights some special cases. In Sect. 5, our axioms
are stated and discussed. Section 6 contains our representation theorem and a proof
sketch. Section 7 concludes. The Appendix contains the proof of the representation
theorem and auxiliary lemmas.

2 Setup

Let Z be a finite set of prizes and let �(Z) = {β ∈ R
Z+| ∑z∈Z β(z) = 1} denote

the set of all probability distributions (lotteries) over Z which stand for the options
of our approach. As usual we may identify a prize z ∈ Z with the lottery in �(Z)

assigning probability 1 to this prize. Given β, β ′ ∈ �(Z) and λ ∈ [0, 1], we define the
λ-mixture of β and β ′ as usual, i.e., as the lottery λβ + (1 − λ)β ′ ∈ �(Z) attaching
to each prize z ∈ Z the probability λβ(z) + (1 − λ)β ′(z). A non-empty subset x of
�(Z) is interpreted as an opportunity set or menu, i.e., as the commitment to choose
some lottery β ∈ x at a given later date. We refer to the choice of a menu as the ex ante
stage and to the (implicit) choice of a lottery within the chosen menu as the ex post
stage. We endow the set of lotteries with the Euclidean metric and the set of menus
with the Hausdorff metric (see, e.g., Schneider 1993).

We restrict attention to menus that are polytopes, i.e., convex hulls of (non-empty)
finite sets of lotteries. We can view these menus as determined by a finite set of linear
constraints or, equivalently, we can think of the decision maker as considering finite
menus but being able to randomize between options. This restriction is necessary
for our representation theorem to hold (see Appendix). Let X denote the set of all
such menus. We consider a decision maker endowed with a weak preference relation
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Indecisiveness aversion and preference for commitment 5

� over X , capturing her ex ante ranking of menus. From � we define the strict prefer-
ence relation � and the indifference relation ∼ as usual, i.e., for all x, x ′ ∈ X , x � x ′
if and only if x � x ′ but not x ′ � x , and x ∼ x ′ if and only if both x � x ′ and x ′ � x .
� is said to be complete if for all x, x ′ ∈ X , either x � x ′ or x ′ � x , and transitive if
for all x, x ′, x ′′ ∈ X , x � x ′ � x ′′ implies x � x ′′ (we will in fact assume below that
� is both complete and transitive).

In Bethy’s illustrative example, the set of prizes is the set Z = {A, B, C} of employ-
ees, the set of options is the set �(Z) of lotteries over employees (any such lottery
corresponding to Bethy picking an employee randomly), and the set of menus is the
set X of convex hulls of finite sets of lotteries over employees. Thus, X contains in
particular the singleton menu {A} (Bethy has to choose from her own division, i.e.,
pick Alan for sure) and the grand menu conv({A, B, C}) (Bethy can choose from the
whole company, i.e., pick Alan, Bob, or Chris, or randomize between them with any
probabilities she wishes), where conv(·) denotes convex hull. That she strictly pre-
fers choosing from her own division rather than the whole company means that her
preference relation � on X is such that {A} � conv({A, B, C}).

3 The dominance relation

We first derive from � a dominance relation �∗ over lotteries as follows: for all
β, β ′ ∈ �(Z),

β �∗ β ′ ⇔ {β} ∼ conv({β, β ′}).

From �∗ we define the relations �∗ and ∼∗ as above. Moreover, since �∗ can (and,
in general, will) be incomplete, we denote by 	
∗ its noncomparability relation, i.e.,
for all x, x ′ ∈ X , x 	
∗ x ′ if and only if neither x �∗ x ′ nor x ′ �∗ x . We interpret the
relation β �∗ β ′ as meaning that the decision maker decisively weakly prefers β to
β ′, i.e., is certain ex ante that she will weakly prefer β to β ′ ex post. That is to say, even
if she is uncertain ex ante about her ex post preferences, all ex post preferences she
deems possible are such that β is weakly preferred to β ′. We now explain why this is
naturally characterized by the menu {β} being indifferent (according to the primitive
preference relation) to the larger (and, hence, more flexible) menu conv({β, β ′}).

First, assume the decision maker decisively weakly prefers β to β ′ (i.e., β �∗ β ′).
Then adding β ′ to the singleton menu {β} should neither improve nor worsen this
menu (the convex hull is just to have a menu in X ). In fact, in this case we should also
have conv({β, β ′}) � {β ′}, a property that will follow from our axioms (see Lemma
2 in the Appendix). Conversely, suppose that the decision maker does not decisively
weakly prefer β to β ′. This may be the case for two reasons:

• First, she may decisively strictly prefer β ′ to β (i.e., β ′ �∗ β). In this case,
adding β ′ to the singleton menu {β} should improve this menu, so we should
have conv({β, β ′}) � {β} (as well as {β ′} ∼ conv({β, β ′}), see Lemma 2 in the
Appendix).
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• Second, she may be indecisive between β and β ′ (i.e., β 	
∗ β ′). In this case,
under our assumption that she is averse to such indecisiveness, we should have
{β} � conv({β, β ′}) and {β ′} � conv({β, β ′}) (see Lemma 2 in the Appendix).

In both cases, we do not have {β} ∼ conv({β, β ′}), justifying the above definition. In
Bethy’s example, that Alan is dominated by Chris means that C �∗ A, and this should
be reflected in the ex ante ranking of menus by the fact that {C} ∼ conv({A, C}) � {A}
(i.e., Bethy is indifferent between being forced to pick Chris and having to choose/ran-
domize between Alan and Chris, and strictly prefers both of these two menus to being
forced to pick Alan). The fact that Bob and Chris are not dominated by each other
means that B 	
∗ C , and this should be reflected by the fact that {B} � conv({B, C})
and {C} � conv({B, C}) (i.e., Bethy strictly prefers being forced to pick Bob, as well
as being forced to pick Chris, to having to choose/randomize between Bob and Chris).

Note that our dominance relation is very similar to Kreps (1979)’s “domination”
relation, and also has a similar interpretation. The only difference is that in the absence
of decisive preference/dominance, the decision maker prefers larger menus in Kreps
(1979)’ model whereas she prefers smaller menus in our model. Of course, this just
reflects the fact that Kreps (1979) assumes the decision maker expects to learn her ex
post preferences before choosing a lottery whereas we assume she does not. Dekel
et al. (2001), who neither assume that the decision maker prefers larger menus nor
smaller ones in the most general model they consider, also use a similar definition and
interpretation in their comparative notion of subjective uncertainty.

From �∗ we define the set c(x) of undominated (i.e., not strictly dominated) lot-
teries in a menu x ∈ X by

c(x) = {β ∈ x |�β ′ ∈ x, β ′ �∗ β}.

Under our assumption that the decision maker discards all dominated lotteries and
restricts attention to undominated ones, she should be indifferent between choosing
a lottery in x or in c(x) (see Lemma 2 in the Appendix). Thus, in Bethy’s example,
since B 	
∗ C �∗ A, we have c(conv({A, B, C})) = conv({B, C}) and, if Bethy
restricts attention to undominated options, we should then have conv({A, B, C}) ∼
conv({B, C}).

4 Representation

We look for a representation of � as follows:

Definition 1 An indecisiveness averse representation of � is a couple (U, g), where
U ⊆ R

Z is nonempty, closed, convex, and such that for all β, β ′ ∈ �(Z),

β �∗ β ′ ⇔ [∀u ∈ U, Eu(β) ≥ Eu(β ′)], (1)
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Indecisiveness aversion and preference for commitment 7

and g : R
U → R is continuous, weakly increasing on U (X) = {(minβ∈x Eu(β))u∈U |

x ∈ X}, and such that for all x, x ′ ∈ X ,

x � x ′ ⇔ g

((

min
β∈c(x)

Eu(β)

)

u∈U

)

≥ g

((

min
β ′∈c(x ′)

Eu(β ′)
)

u∈U

)

. (2)

The interpretation of the representation is as follows. The decision maker envisions
a set of possible ex post preferences. Each of these is an expected utility preference
represented by a von Neumann-Morgenstern utility function u ∈ U , so U can be
interpreted as a (subjective) state space. From Eq. 1, a lottery β weakly dominates
a lottery β ′ if and only if β has weakly higher expected utility than β ′ regardless of
the ex post utility function (E(·) denotes mathematical expectation). Equation 1 also
implies that the set c(x) of undominated lotteries in a menu x can be computed from
U as:

c(x) = {β ∈ x |�β ′ ∈ x, EU (β ′) > EU (β)},

where EU (β ′) > EU (β) means Eu(β ′) ≥ Eu(β) for all u ∈ U , with strict inequality
for some u ∈ U . The set c(x) can be shown to be nonempty and compact (see Lemma 1
in the Appendix). From Eq. 2, the evaluation of a menu x is fully determined by the set
c(x), reflecting our assumption that the decision maker restricts attention to undom-
inated lotteries. More precisely, for each ex post utility function, the decision maker
evaluates a menu x by the lowest possible expected utility an undominated lottery in
x can give her. This reflects our assumption of aversion to indecisiveness. Finally, the
different possible ex post utility functions are aggregated through the increasing func-
tion g. In Bethy’s example, the subjective state space is U = conv({u f , um}), where
u f , um ∈ R

Z are the utility functions defined in the introduction, and the aggregator
is g((ru)u∈U ) = ru f + rum .

Note that the set U of ex post utility functions plays a double role in the represen-
tation. First, it determines the mapping x → c(x), i.e., the set of undominated options
for each menu x . The larger U , the larger c(x) for a given x . Second, it determines the
mapping c(x) → (minβ∈c(x) Eu(β))u∈U . The larger c(x), the lower minβ∈c(x) Eu(β)

for each u ∈ U and, hence, the lower the ex ante utility of x since g is increasing. In
the extreme case where the decision maker is not indecisive between any two lotteries
(i.e., �∗ is complete), U can be taken to be a singleton, so the second role disappears
and we have

x � x ′ ⇔ max
β∈x

Eu(β) ≥ max
β ′∈x ′ Eu(β ′).

Thus, we are brought back to standard indirect utility for which menus are simply
ranked according to their optimal options. In the opposite extreme case where the
decision maker is indecisive between any two (distinct) lotteries (i.e., �∗ is maximally
incomplete), U encompasses all possible expected utility preferences and c(x) = x
for all x ∈ X , so we have
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x � x ′ ⇔ g

((

min
β∈x

Eu(β)

)

u∈U

)

≥ g

((

min
β ′∈x ′ Eu(β ′)

)

u∈U

)

.

Now, let V = −U and define h : R
V → R by h(z) = g(−z) for all z ∈ R

V . Then h
is weakly decreasing and we have

x � x ′ ⇔ h

((

max
β∈x

Ev(β)

)

v∈V

)

≥ h

((

max
β ′∈x ′ Ev(β ′)

)

v∈V

)

.

This is basically Dekel et al. (2001)’s “ordinal EU representation” with negative rather
than positive monotonicity.

5 Axioms

In order to characterize the representation defined above, we now introduce several
axioms. In order to avoid cumbersome expressions, we make use of the dominance
relation �∗ and the set c(x) of undominated lotteries in a menu x in the statement of
the axioms, but one should keep in mind that all these objects are derived from the
primitive preference relation � on X .

Axiom 1 (Weak order) � is complete and transitive.

This is a standard axiom, necessary for any utility representation.

Axiom 2 (Dominance transitivity) �∗ is transitive.

Axiom 3 (Dominance independence) For all β, β ′, β ′′ ∈ �(Z) and λ ∈ (0, 1), if
β �∗ β ′, then λβ + (1 − λ)β ′′ �∗ λβ ′ + (1 − λ)β ′′.

Axiom 4 (Dominance continuity) For all β, β ′, β ′′, β ′′′ ∈ �(Z), the set
{λ ∈ [0, 1]|λβ + (1 − λ)β ′ �∗ λβ ′′ + (1 − λ)β ′′′} is closed.

These three axioms together mean that the dominance relation �∗ is a (possibly
incomplete) expected utility preference relation. In particular, Axioms 2 and 3 seem to
be natural consistency properties, given our interpretation of the dominance relation
as reflecting the decision maker’s certain judgments about her ex post preferences.
Note that transitivity of �∗ neither implies nor is implied by transitivity of �, which
is imposed in Axiom 1. Independence of �∗, on the other hand, is weaker than inde-
pendence of �, which is not imposed (for a detailed discussion of independence for
preferences over menus, see, Dekel et al. 2001).

Axiom 5 (Indecisiveness aversion) For all x, x ′ ∈ X, if for all β ∈ c(x), there exists
β ′ ∈ c(x ′) such that β �∗ β ′, then x � x ′.

This is our key axiom, stating that if every lottery that is undominated in x weakly
dominates some lottery that is undominated in x ′, then x is weakly preferred to x ′. To
understand its logic, suppose every lottery β ∈ c(x) weakly dominates some lottery
β ′ ∈ c(x ′), and let y′ denote the set of all such β ′’s, i.e., all lotteries in c(x ′) that are
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Indecisiveness aversion and preference for commitment 9

weakly dominated by some lottery in c(x). Since y′ can basically be obtained from
c(x) by weakly worsening (in the sense of the dominance relation) all lotteries in c(x),
it seems natural for the decision maker to weakly prefer c(x) to y′. Now, c(x ′) may
also contain lotteries that do not belong to y′, i.e., that are not weakly dominated by
any lottery in c(x). Such a lottery β̂ ′ ∈ c(x ′) \ y′ cannot, however, weakly dominate
any lottery β ′ ∈ y′ (indeed, if β̂ ′ ∼∗ β ′ then β̂ ′ ∈ y′, and if β̂ ′ �∗ β ′ then β ′ /∈ c(x ′),
a contradiction in both cases), so it is necessarily noncomparable to all lotteries in y′.
Thus, such lotteries only create indecisiveness, so the decision maker must prefer y′
to c(x ′) if she is averse to indecisiveness. Moreover, if the decision maker restricts
attention to undominated lotteries, then she must be indifferent between x and c(x),
as well as between x ′ and c(x ′). By transitivity, then, x must be weakly preferred to
x ′. Lemma 2 in the Appendix gives formal insights into this axiom.

Axiom 6 (Undominated continuity) For all x, x ′, (xn)n≥1, (x ′
n)n≥1 ∈ X such that

c(xn) → c(x) and c(x ′
n) → c(x ′), if xn � x ′

n for all n ≥ 1, then x � x ′.

This is a continuity axiom that is distinct from Axiom 4. Since the decision maker
restricts attention to undominated lotteries, the notion of continuity that is relevant
to our representation involves converging sequences of sets of undominated lotteries
rather than menus (note that we may have c(xn) → c(x) without xn → x and vice
versa).

6 Representation Theorem

We obtain the following result:

Theorem 1 There exists an indecisiveness averse representation of � if and only if
� satisfies Axioms 1–6.

The proof appears in the Appendix, here we only provide a brief sketch for the suffi-
ciency part. First, by Axioms 1–4, the dominance relation �∗ is a (possibly incomplete)
expected utility preference relation. Hence, by Dubra et al. (2004)’s Multi-Expected
Utility Theorem, there exists a non-empty, closed, convex set U ⊆ R

Z satisfying
Eq. 1. This is the subjective state space. Moreover, using Axiom 5, it can be shown
that x ∼ conv(c(x)) for all x ∈ X (see Lemmas 1 and 2 in the Appendix), i.e.,
the decision maker restricts attention to undominated lotteries. It is therefore suffi-
cient to establish the representation on the set K ⊆ X of menus that are of the form
conv(c(x)) for some x ∈ X . On this set, � is complete, transitive (Axiom 1), and
continuous (Axiom 6) and, hence, can be represented by a continuous utility function
v : K → R. Using Axiom 5 again, it can then be shown, by means of arguments
from convex analysis, that for all x, x ′ ∈ K , if minβ∈x Eu(β) ≥ minβ ′∈x ′ Eu(β ′) for
all u ∈ U then x � x ′. Consequently, one can define a continuous and increasing
aggregator g : R

U → R such that v(x) = g((minβ∈x Eu(β))u∈U ) for all x ∈ K ,
which establishes Eq. 2 and completes the proof of the sufficiency part.
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7 Conclusion

We have introduced and axiomatized a representation of preferences over menus cap-
turing the notion of indecisiveness aversion. In our representation, the decision maker’s
ex ante uncertainty about her ex post preferences is captured by means of a subjective
state space. Since this uncertainty does not resolve before the choice of option, it
gives rise to indecisiveness at the ex post stage. More specifically, the decision maker
discards options that are clearly dominated, and evaluates the remaining set of un-
dominated options pessimistically, as if she would end up with the worst possible
undominated option, no matter which subjective state realizes. This gives rise to a
preference for commitment, in the sense of preferring menus with fewer undominated
options.

Our representation is ordinal in the sense that our aggregator is only required to be
weakly increasing and continuous. A natural refinement of the present model would
be to look for a more specific representation in which the aggregator has a linear form.
That is to say, one could look for a positive measure μ on U such that, for all x, x ′ ∈ X ,

x � x ′ ⇔
∫

u∈U

(

min
β∈c(x)

Eu(β)

)

dμ(u) ≥
∫

u∈U

(

min
β ′∈c(x ′)

Eu(β ′)
)

dμ(u).

One thing to note about this representation is that it is not truly linear. This is because
it is not true that c(λx + (1 − λ)x ′) = λc(x) + (1 − λ)c(x ′) in general. In fact, it
is only true that c(λx + (1 − λ)x ′) ⊆ λc(x) + (1 − λ)c(x ′) but the converse does
not hold because, roughly speaking, by mixing between two menus one can get rid of
some undominated options. Therefore, this representation does not imply the indepen-
dence axiom, but only the following, weaker axiom: For all x1, x2, x̄, y1, y2 ∈ X , and
λ ∈ (0, 1) such that conv(c(yi )) = conv(λc(xi ) + (1 − λ)c(x̄)), i = 1, 2, if x1 � x2
then y1 � y2. This makes it tempting to try to work on the class {conv(c(x))|x ∈ X}
and parallel the proof of Dekel et al. (2001, 2007a)’s additive representation theorem.
However, since this class is not convex, a similar argument to theirs (in particular for
Lemma S11 in Dekel et al. 2007b) is not at hand in our model. We leave the problem
of axiomatizing a linear representation of indecisiveness averse preferences open for
future research.
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Appendix

Lemma 1 Assume there exists U ⊆ R
Z such that �∗ satisfies Eq. 1. Then for all

x ∈ X, conv(c(x)) ∈ X.

Proof First, c(x) is nonempty since x is compact (Eliaz and Ok 2006, Lemma 3).
Since a polytope has only finitely many faces and each of these faces is closed, it is
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sufficient to show that c(x) is a union of faces of x . Let β ∈ c(x). We know that
β belongs to the relative interior of some face f of x (Rockafellar 1970, Theorem
18.2). It is sufficient to show that f ⊆ c(x). Suppose there exists β ′ ∈ f such that
β ′ /∈ c(x). Then, clearly, β ′ �= β. Moreover, by Eq. 1 and the definition of c(x),
there exists β̄ ′ ∈ x such that U · (β̄ ′ − β ′) > 0, where · denotes scalar product and
U · (β̄ ′ − β ′) > 0 means u · (β̄ ′ − β ′) ≥ 0 for all u ∈ U with strict inequality for
at least some u ∈ U . Now, since β belongs to the relative interior of f , there exists
β ′′ ∈ f and λ ∈ (0, 1) such that β = λβ ′ + (1 − λ)β ′′ (Rockafellar 1970, Theorem
6.4). Let β̄ = λβ̄ ′ + (1 − λ)β ′′. Then U · (β̄ − β) = λU · (β̄ ′ − β ′) > 0, so β /∈ c(x),
a contradiction. ��

Lemma 2 Assume � satisfies Axioms 1–5. Then:

1. For all β, β ′, β ′′ ∈ �(Z) and λ ∈ (0, 1), β �∗ β ′ if and only if λβ+(1−λ)β ′′ �∗
λβ ′ + (1 − λ)β ′′.

2. For all x, x ′ ∈ X, if c(x) ⊆ c(x ′), then x � x ′.
3. For all x ∈ X, conv(c(x)) ∈ X.
4. For all x ∈ X, x ∼ conv(c(x)).
5. For all β, β ′ ∈ �(Z),

β ∼∗ β ′ ⇔ {β} ∼ conv({β, β ′}) ∼ {β ′},
β �∗ β ′ ⇔ {β} ∼ conv({β, β ′}) � {β ′},
β 	
∗ β ′ ⇔ [{β} � conv({β, β ′}) and {β ′} � conv({β, β ′})].

Proof 1. Follows from Axioms 1–4 (Dubra et al. 2004, Lemma 1).
2. Follows immediately from Axiom 5.
3. By Axioms 1–4, there exists a nonempty, closed, convex set U ⊆ R

Z such that
�∗ satisfies 1 (Dubra et al. 2004). Hence the result follows from Lemma 1.

4. By parts 2 and 3 of this lemma, it is sufficient to prove that c(conv(c(x))) = c(x).
First, we show that for all β ∈ x , there exists β ′ ∈ c(x) such that β ′ �∗ β. Let
y = {β̄ ∈ x |β̄ �∗ β}. Since x is compact and �∗ is continuous (Dubra et al. 2004,
Proposition 1), y is compact and, hence, there exists β ′ ∈ y such that β̄ �∗ β ′ for
no β̄ ∈ y (Eliaz and Ok 2006, Lemma 3). Suppose β̄ �∗ β ′ for some β̄ ∈ x \ y.
Since β ′ �∗ β by definition of y, it follows that β̄ �∗ β by transitivity of �∗, so
β̄ ∈ y, a contradiction. Hence β ′ ∈ c(x).
Now, by definition, c(x) = {β ∈ x |�β ′ ∈ x, β ′ �∗ β} and c(conv(c(x))) =
{β ∈ conv(c(x))|�β ′ ∈ conv(c(x)), β ′ �∗ β}. Let y′ = {β ∈ conv(c(x))|�β ′ ∈
x, β ′ �∗ β}. Then y′ = c(x)∩conv(c(x)) = c(x). We show that c(conv(c(x)))= y′.
Clearly, y′ ⊆ c(conv(c(x))) since conv(c(x)) ⊆ x . Conversely, letβ ∈ conv(c(x))\
y′. Then there exists β ′ ∈ x such that β ′ �∗ β. By the argument above, there then
exists β ′′ ∈ c(x) such that β ′′ �∗ β ′ and, hence, β ′′ �∗ β,
so β /∈ c(conv(c(x))). Hence c(conv(c(x))) ⊆ y′.

5. The indifference property follows immediately from the definition of �∗. Now, for
all β, β ′ ∈ �(Z), we obviously have c({β}) = {β} and c({β ′}) = {β ′}. Moreover,
by part 1 of this lemma,
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c(conv({β, β ′})) =

⎧
⎪⎨

⎪⎩

{β} if β �∗ β ′,
{β ′} if β ′ �∗ β,

conv({β, β ′})) if β ∼∗ β ′ or β 	
∗ β ′.

We now show that β �∗ β ′ implies conv({β, β ′}) � {β ′}. Suppose β �∗ β ′ and
{β ′} � conv({β, β ′}). Then {β} ∼ conv({β, β ′}) by definition of �∗ and, hence,
{β ′} � {β} by transitivity of �. But since c({β}) = {β}, c({β ′}) = {β ′}, and β �∗ β ′,
we have {β} � {β ′} by Axiom 5, a contradiction. This establishes the strict preference
property as well as the ⇐ part of the noncomparability property. For the ⇒ part,
assume β 	
∗ β ′. Then c({β}) ⊆ c(conv({β, β ′})) and c({β ′}) ⊆ c(conv({β, β ′})), so
we have {β} � conv({β, β ′}) and {β ′} � conv({β, β ′}) by part 2 of this lemma. Sup-
pose these two preferences are in fact indifferences. Then β ∼∗ β ′, a contradiction.
Hence one of the two must be strict. Suppose the other one is an indifference. Then
we face the same contradiction as above. Hence both preferences are strict. ��
Proof of the Representation Theorem Obviously, Axiom 1 is necessary for a repre-
sentation to exist. Given this axiom, we know that �∗ is reflexive and, hence, Axi-
oms 2–4 are necessary and sufficient for the existence of a nonempty, closed, convex
set U ⊆ R

Z such that �∗ satisfies Eq. 1 (Dubra et al. 2004). It remains to prove that
Axioms 5 and 6 are necessary and sufficient for the existence of a continuous and
weakly increasing aggregator g : U (X) → R such that � satisfies Eq. 2. It is easy to
check that these axioms are necessary. The remainder of this proof is devoted to the
sufficiency part.

Assume � satisfies Axioms 1–6. Let K = {conv(c(x))|x ∈ X}. Clearly, for all
x ∈ X and u ∈ U , we have minβ∈c(x) Eu(β) = minβ∈conv(c(x)) Eu(β). Hence, by
parts 3 and 4 of Lemma 2, it is sufficient to find a continuous and weakly increasing
aggregator g such that, for all x, x ′ ∈ K ,

x � x ′ ⇔ g

((

min
β∈x

Eu(β)

)

u∈U

)

≥ g

((

min
β ′∈x ′ Eu(β ′)

)

u∈U

)

.

Since K is a subset of a separable metric space (Klein and Thompson 1984), Axioms 1
and 6 imply the existence of a continuous utility function v : K → R such that, for all
x, x ′ ∈ K , x � x ′ if and only if v(x) ≥ v(x ′) (Debreu 1954). We now claim that for
all x, x ′ ∈ K , if minβ∈x Eu(β) ≥ minβ ′∈x ′ Eu(β ′) for all u ∈ U , then x � x ′. If the
claim is correct, then we can define the aggregator g : U (K ) = U (X) → R by, for all
(ru)u∈U ∈ U (K ), g((ru)u∈U ) = v(x) for any x ∈ K such that (minβ∈x Eu(β))u∈U =
(ru)u∈U . Moreover, it is clear that g is then weakly increasing, so the proof is complete.

To prove the claim, let x ∈ K and define the sets

y = {γ ∈ R
Z |∀u ∈ U, u · γ ≥ min

β∈x
u · β},

y′ = {γ ∈ R
Z |∃β ∈ x, U · γ ≥ U · β}.

By Eq. 1 and Axiom 5, it is sufficient to show that y′ = y. Define the set k = {γ ∈
R

Z |U · γ ≥ 0}. Then k is a closed convex cone and, more precisely, is the polar of the
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cone generated by −U . Clearly, y′ = x + k. Since x is a polytope and k is closed and
convex, y′ is closed and convex (Rockafellar 1970, Theorem 20.3) and, hence, is equal
to the intersection of all closed half-spaces containing it (Rockafellar 1970, Theorem
11.5). For all u ∈ R

Z , define the set hu = {γ ∈ R
Z |u · γ ≥ infγ ′∈y′ u · γ ′}. Clearly,

we have y′ = ⋂{hu |u ∈ R
Z } = ⋂{hu |u ∈ V }, where V = {u ∈ R

Z | infγ ′∈y′ u ·γ ′ >

−∞}. By definition, −V is the barrier cone of y′ and, hence, is the polar of the reces-
sion cone of y′ (Rockafellar 1970, Corollary 14.2.1). But since x is a polytope, the
recession cone of y′ is the recession cone of k and, since k is a cone, the recession cone
of k is k. Thus, −V is the polar of k and, hence is the cone generated by −U . Since
U is convex, this latter cone is

⋃{λU |λ ≥ 0} and, since hu = hλu for all λ > 0 by
definition, we have y′ = ⋂{hu |u ∈ U }. Finally, since k is a cone and x is a polytope,
infγ ′∈y′ u · γ ′ > −∞ implies infγ ′∈y′ u · γ ′ = minγ ′∈x u · γ ′, so the latter equality
implies y′ = y. ��
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