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Abstract

It is shown that preferences can be constructed from observed choice behavior in a way that is robust to
indifferent selection (i.e., the agent is indifferent between two alternatives but, nevertheless, is only observed
selecting one of them). More precisely, a suggestion by Savage [Savage, L.J., 1954. The foundations of
statistics. JohnWiley and Sons] to reveal indifferent selection by considering small monetary perturbations of
alternatives is formalized and generalized to a purely topological framework: preferences over an arbitrary
topological space can be uniquely derived from observed behavior under the assumptions that they are
continuous and nonsatiated and that a strictly preferred alternative is always chosen, and indifferent selection
is then characterized by discontinuity in choice behavior. Two particular cases are then analyzed: monotonic
preferences over a partially ordered set, and preferences representable by a continuous pseudo-utility function.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

How does an agent choose between two indifferent alternatives a and a′? On the one hand,
indifference means that she views this choice as (ex ante) immaterial for her well-being, so she
might as well select a, or a′, or randomize between them, or delegate her choice. On the other hand,
for an outside observer who only has data about the agent’s choice behavior, say the agent chooses
a over a′, it is of importance to know whether the agent actually strictly prefers a to a′ or she is
indifferent between a and a′. In the latter case, we say that the agent makes an indifferent selection.

To illustrate the importance of indifferent selection, consider a social planner who has to select
between two social alternatives a and a′. The alternatives involve two agents and the social
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planner has data about their respective choice behavior, from which he seeks to infer their
respective preferences. The first agent strictly prefers a to a′ and, accordingly, chooses a over a′;
the second agent is indifferent between a and a′ but nevertheless selects a′ over a. Then a Pareto-
dominates a′, but if the social planner assumes that his observations about the agent’s behavior
fully reflect their preferences, he will think that the second agent strictly prefers a′ to a and,
hence, that a and a′ are Pareto-noncomparable. Thus, neglecting indifferent selection can block
Pareto-improvements (e.g., if a′ is the status quo).

How, then, can one disentangle between strict preference and indifference based on behavioral
data? The usual revealed preference approach merely rules out indifferent selection by assuming
that if the agent is indifferent between a and a′, then she will be observed randomizing between a
and a′. However, this assumption is hard to justify: why could not an indifferent agent decide to
select a, say, instead of resorting to a randomization device, or to randomize subjectively rather
than observably? In his pioneering work on decision making under uncertainty, Savage (1954,
p17) noted the problem of indifferent selection and informally suggested a more satisfactory
solution: he argued that indifference could be revealed by considering small monetary pertur-
bations of alternatives. Namely, if the agent is indifferent between a and a′, then adjoining any
(however small) monetary bonus to a should make it chosen over a′ and, similarly, adjoining any
bonus to a′ should make it chosen over a. On the other hand, if she strictly prefers a to a′, then
adjoining a small enough bonus to a′ should not make it chosen over a.

This paper formalizes Savage (1954)’s argument in a general topological framework. More
precisely, it is shown that under the assumptions that preferences over an arbitrary topological
space are continuous and nonsatiated and that a strictly preferred alternative is always chosen,
preferences can be uniquely derived from observed behavior, and indifferent selection is char-
acterized by discontinuity in behavior. To make the model fully behavioral, necessary and
sufficient conditions on behavior are then provided under which there indeed exists a preference
relation satisfying these assumptions.

Two applications of this general model are provided. First, if the set of alternatives is naturally
endowed with a partial order representing some notion of objective betterness (Cubitt and
Sugden, 2001), e.g., more money is better, then the nonsatiation condition is naturally
strengthened to monotonicity with respect to this partial order. In this particular setup, Savage
(1954)’s informal argument is explicitly recovered. Second (and going back to the general
topological setup), in the case where the derived preferences can be represented by a continuous
utility function, this function turns out to be a pseudo-utility representation (Moulin, 1988; Subiza
and Peris, 1998) of observed behavior. Thus, choice behavior can yield a continuous pseudo-
utility function even though it might not be continuous nor even representable by any utility
function in the usual sense. This gives rise to generalizations of classical representation results for
continuous preferences over a topological space (Eilenberg, 1941; Debreu, 1954; Rader, 1963).

The paper is organized as follows. Section 2 introduces the setup. Section 3 presents an
example illustrating all subsequent results. Section 4 contains the general results for preferences
over an arbitrary topological space. Section 5 analyzes the particular case of monotonic prefer-
ences over a partially ordered set. Section 6 analyzes the particular case of preferences repre-
sentable by a pseudo-utility function.

2. Setup

Letℝ andQ denote the set of real and rational numbers, respectively. Consider an agent facing
an arbitrary set A of choice alternatives. The agent’s preferences over A are modeled by means
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of a binary relation + onA (i.e.,+p A�A), with a+a′ indicating that she weakly prefers a to
a′. As usual, we say that + is:

• reflexive if, for all a∈A, a+a,
• complete if, for all a, a′∈A, [a+a′ or a′+a],
• antisymmetric if, for all a, a′∈A, [a+a′ and a′+a]⇒a=a′,
• transitive if, for all a, a′, a″∈A, [a+a′ and a′+a″]⇒a+a″.

From ≽ are derived the binary relations ≻ and ∼ on A defined by, for all a, a′∈A,

ada V() ½a+a V and not a V+a� ðstrict preferenceÞ;
afa V() ½a+a V and a V+a� ðindifferenceÞ:

We distinguish between preferences modeling the agent’s choice behavior and preferences
modeling her tastes. Formally, the agent is endowed with two distinct preference relations on A:

• a behavioral preference relation, denoted by ≽B, with a ≽B a′ indicating that she would select
a if she had to choose between a and a′,

• a cognitive preference relation, denoted by ≽C, with a ≽C a′ indicating that she likes a at least
as much as a′.

We assume that the agent’s choice behavior does not contradict her tastes in the sense of
choosing a strictly less liked alternative:

Definition 1. A binary relation ≽B on a set A is compatible with a binary relation +C on A if,
for all a, a′∈A, a≻C a′⇒a≻Ba′.

Although situations in which a≻Ca′ and a′≻Ba can be conceived (e.g., addiction), com-
patibility of behavior with tastes seems natural in most economic settings. Note that no constraint
is imposed on choice behavior in situations of cognitive indifference, which allows for indifferent
selection, i.e., a∼Ca′ and [a≻Ba′ or a′≻Ba]. This is unlike many economic models that
implicitly assume ≽B=≽C (Mandler, 2005) and, hence, ∼B=∼C, thereby ruling out indifferent
selection (e.g., when determining equilibrium and analyzing welfare by means of a single
preference relation per agent). Whereas the conceptual distinction between these two preference
concepts is well-understood in the literature (Mas-Colell et al., 1995, p5), behavioral preferences
falling in the revealed preference tradition (Samuelson, 1938) and cognitive preferences in the
ordinalist tradition (Pareto, 1906), their formal distinction is a key feature of the present analysis.

Note that assuming ≽B=≽C first requires that one allows for behavioral indifference between
distinct alternatives (otherwise cognitive indifference is ruled out). Thus, the revealed preference
literature often finds it convenient to interpret behavioral preference as indicating that an
alternative is “choosable” rather than actually chosen, and to operationalize this interpretation by
enabling the agent to resort to some observable randomization (or delegation) device rather than
selecting one single alternative by herself. However, even if randomization is allowed and
identified with behavioral indifference, it is hard to justify why the agent could not decide to select
a single alternative by herself rather than randomizing when she is cognitively indifferent (in fact,
cognitive indifference precisely means that she views such a selection as harmless), or to ran-
domize subjectively rather than observably. The starting point of the present analysis is the formal
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separation between the two preference concepts and the degree of freedom between them that is
allowed by the compatibility assumption. Although it becomes possible, in this framework, to rule
out a∼Ba′ per se (unless a=a′), in line with a fully behavioral interpretation of preference, this
turns out to be technically unnecessary and, consequently,≽B is not assumed to be antisymmetric.

Both≽B and≽C are assumed to be complete. Completeness of behavioral preferences means that
choice between any two alternatives inA is conceivable and is generally considered an innocuous
assumption. Completeness of cognitive preferences, although also a standard assumption, is often
judged restrictive: it means that the agent is able to come upwith a judgment about which of any two
alternatives inA she likes better. The role of this assumption here is to single out indifferent selection
as the only possible source of discrepancy between behavioral and cognitive preferences:

Lemma 1. Let ≽B and ≽C be two complete binary relations on a set A such that ≽B is
compatible with ≽C. Then ≽C=≽B ∪ ∼C.

Proof. By compatibility, one has ≻C⊆≽B and, hence, ≽C=≻C∪∼C⊆≽B∪∼C. Conversely,
completeness of ≽C and compatibility together imply ≽B⊆≽C and, hence, ≽B∪∼C⊆≽C

∪∼C=≽C. □

As appears from Lemma 1, under our completeness and compatibility assumptions, cogni-
tive and behavioral preferences only differ for alternatives a and a′ such that a∼Ca′ and [a≻Ba′
or a′≻Ba] (for a similar analysis allowing for incomplete preferences, see Danan, 2003). Finally,
it should be noted that neither cognitive nor behavioral preferences are assumed to be transitive.

The present analysis assumes that ≽B is observable but not ≽C, and addresses the question
whether ≽C can be recovered from ≽B. This is in line with a revealed preference approach: the
agent’s tastes, which are unobservable mental states, are revealed by her observable choice
behavior (if choice behavior is modeled, more generally, by a choice function, then the existence
of a complete behavioral preference relation is characterized by Sen (1971)’s Axioms α and γ). In
the present setup, the problem boils down to that of behaviorally identifying indifferent selection.

3. An example

As an illustration, suppose alternatives are commodity bundles made of two goods, and the
agent is observed choosing lexicographically by, first, maximizing the total quantity of goods and,
second, maximizing the quantity of good 1. Formally, A¼ ℝ2 and, for all (x1, x2), (x′1, x′2)∈ℝ2,

ðx1; x2Þ+Bðx V1; x V2Þ () ½x1 þ x2 N x V1 þ x V2 or ½x1 þ x2 ¼ x V1 þ x V2 and x1 z x V1��:

Note that ≽B is antisymmetric and, therefore, can receive a fully behavioral interpretation.
What can we say about the agent’s cognitive preferences? First, it is possible that her tastes fully
coincide with her observed behavior and that she never makes an indifferent selection, i.e.,
≽C=≽B. But it might also be the case that her tastes do not select between any alternatives and
that her behavioral preferences fully result from indifferent selection, i.e.,+C ¼ A�A. Between
these two extremes, it is conceivable, e.g., that only the total quantity of goods matters according
to her tastes whereas maximizing the quantity of good 1 is only used to achieve indifferent
selection, i.e., for all (x1, x2), (xV1, xV2)∈ℝ2,

ðx1; x2Þ+Cðx V1; x V2Þ () x1 þ x2 z x V1 þ x V2:
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Thus, additional assumptions must be imposed in order to pin down the agent’s cognitive
preferences.

Now, note that, among the three possible cognitive preference relations defined above, the first
one is discontinuous and the second one is locally satiated (i.e., it has a local maximum). As it
turns out, the third one is the unique continuous and locally nonsatiated cognitive preference
relation with which ≽B is compatible. Furthermore, the difference between ≽B (which is locally
nonsatiated and discontinuous) and this third cognitive preference relation resides in the
continuity of the latter: indifferent selection is characterized by discontinuity of the behavioral
preference relation. As shown in Section 4, this argument can be generalized to preferences over
an arbitrary topological space A.

In this example, nonsatiation of ≽C (the third one) takes a particular form: not only is any
bundle strictly less preferred than some other bundle in each of its neighborhoods, but there
are some specific directions along which these other bundles are found. Namely, (x′1, x′2) ≻C

(x1, x2) whenever (x′1, x′2) N (x1, x2), i.e., ≽C is monotonic with respect to the vector order ≥
on ℝ2. If we assume that one of the goods is money, then we explicitly recover Savage
(1954)’s informal argument that indifferent selection can be revealed by adjoining small
monetary bonuses to alternatives: it is characterized by a strict behavioral preference that is
reversed by adjoining an arbitrarily small bonus to the unchosen alternative. Section 5 gen-
eralizes this argument to preferences over any partially ordered set A satisfying some un-
boundedness and denseness properties.

Finally, note that ≽C can be represented by the continuous utility function u : AYℝ defined
by, for all (x1, x2)∈ℝ2, u(x1, x2)=x1+x2, and that u is unique up to a strictly increasing and
continuous transformation. This function, then, also represents≽B, but in a weaker sense (namely,
(x1, x2)≻B (x′1, x′2) whenever u(x1, x2)N (x′1, x′2), but information on indifferent selection is lost).
Note that this continuous utility function can be derived even though≽B is neither continuous nor
even representable by any utility function in the usual sense. Section 6 proceeds in this fashion to
generalize classical representation results for continuous preferences over a topological space A
satisfying some countability and connectedness properties.

4. Main results

Now turning to the general case, we assume A is a topological space (Munkres, 2000) and
denote by cl(.) and int(.) the closure and interior operators on A, respectively. Given an
alternative a∈A and a binary relation B onA (B=≽, ≻, ∼), we denote by U (B, a) and L(B, a)
the upper and lower contour sets of a with respect to B, respectively, i.e.:

UðB; aÞ ¼ fa VaA : a VB ag;
LðB; aÞ ¼ fa VaA : a B a Vg:

We say that a binary relation ≽ on A is:

• upper semi-continuous if, for all a∈A, U (≽, a) is closed,
• weakly upper nonsatiated if, for all a∈A, a∈cl(U(≻, a)),
• strongly upper nonsatiated if, for all a, a′∈A, a≽a′⇒a∈cl(U(≻, a′)).

Upper semi-continuity is defined as usual (if≽ is complete, then it is equivalent to require that
L(≻, a) be open). Weak upper nonsatiation also corresponds to the standard notion of local
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nonsatiation of preferences: no alternative inA is a local maximum for ≽. If ≽ is transitive, then
this local property has the following global implication: if a≽a′, then any neighborhood of a
contains an alternative a″ such that a″≻a and, hence, a″≻a′, so a∈cl(U(≻, a′)). This latter
property is independently stated as strong upper nonsatiation because transitivity is not assumed
here (it indeed implies weak upper nonsatiation provided that ≽ is reflexive). Note that if ≽ is
strongly upper nonsatiated, then it has “thin indifference curves” in the sense that, for all a∈A,
U(∼, a) is nowhere dense in A.

Upper semi-continuity and strong upper nonsatiation turn out to be sufficient for pinning down
the agent’s cognitive preference relation:

Theorem 1. Let ≽B and ≽C be two complete binary relations on a topological space A such
that ≽B is compatible with ≽C. If ≽C is upper semi-continuous and strongly upper nonsatiated,
then, for all a, a′∈A,

a+Ca V()a a clðUð+B; a VÞÞ: ð1Þ

Proof. Let a, a′∈A. If a≽Ca′, then a∈cl(U(≻C, a′)) because ≽C is strongly upper nonsatiated
and, hence, a∈cl(U(≻B, a′)) because≽B is compatible with≽C, so a∈cl(U(≽B, a′)). Conversely,
if a∈cl(U(≽B, a′)), then a∈cl(U(≽C, a′)) because≽C is complete and≽B is compatible with≽C

and, hence, a∈U(≽C, a′) because ≽C is upper semi-continuous, i.e., a≽Ca′. □

To understand how indifferent selection is behaviorally identified, consider two alternatives a
and a′ such that a ≻B a′ and say that (a, a′) is an upper semi-discontinuity point for ≽B if a′∈cl
(U(≽B, a)). It then follows from Eq. (1) that the agent makes an indifferent selection between a
and a′ (i.e., a∼Ca′) if and only if (a, a′) is an upper semi-discontinuity point for ≽B. More
precisely, if (a, a′) is an upper semi-discontinuity point for ≽B, then one must have a∼Ca′ by
upper semi-continuity of ≽C (this rules out, e.g., ≽C=≽B in Section 3’s example). Conversely, if
(a, a′) is not an upper semi-discontinuity point for ≽B, then one cannot have a ∼C a′ by strong
upper nonsatiation of ≽C (this rules out, e.g., +C ¼ A�A in Section 3’s example).

Now, in order to obtain a fully behavioral result, we need to characterize those behavioral
preference relations ≽B for which the cognitive preference relation ≽C defined by Eq. (1) is
indeed upper semi-continuous and strongly upper nonsatiated. Because ≽C only differs from
≽B by the fact that it has more indifferences (see Lemma 1), satiation of ≽B would imply
satiation of ≽C, so it is necessary that ≽B be strongly upper nonsatiated. On the other hand,
upper semi-continuity of ≽B is not necessary, as shown by Section 3’s example. However,
strong upper nonsatiation of ≽B alone is not sufficient. For example, let A¼ ℝ, define the
function f : ℝYℝ by, for all x a ℝ; f ðxÞ ¼ x if x ∈ Q and f (x) =−x otherwise, and assume
that the agent’s behavioral preference relation ≽B is given by, for all x, x′ ∈ ℝ, x≽B x′⇔ f
(x)≥ f (x′). Then ≽B is strongly upper nonsatiated but Eq. (1) implies that x∼C0 for all
x ∈ ℝ, so ≽C is not strongly upper nonsatiated. The problem is that ≽B is too
discontinuous. More precisely, (x, 0) is an upper semi-discontinuity point for all x∈Q and
Q is dense in R. On the contrary, for any alternative a′∈A, we need (a, a′) to be an upper
semi-discontinuity point for only a nowhere dense set of alternatives a for U(∼C, a′) to be
nowhere dense.

To capture this latter property, say that a binary relation ≽ on a topological space A is
upper archimedean if, for all a, a′∈A such that a≻a′ and for all neighborhood V of a, there
exist â∈V and a neighborhood V′ of a′ such that, for all â′∈V′, â≻â′. Intuitively, small



30 E. Danan / Mathematical Social Sciences 55 (2008) 24–37
changes in alternatives have a small effect on preferences: if a≻a′ and one moves from a to
some close (and strictly preferred, by nonsatiation) â, then â≻â′ for all â′ sufficiently close to
a′. It follows that (â, a′) cannot be an upper semi-discontinuity point for any â sufficiently
close to a, ruling out the preceding example. Any upper semi-continuous binary relation is
upper archinedean, but the converse does not hold, as shown by Section 3’s example. We can
now state:

Theorem 2. Let ≽B be a complete binary relation on a topological space A. Then ≽B is upper
archimedean and strongly upper nonsatiated if and only if there exists a complete, upper semi-
continuous and strongly upper nonsatiated binary relation ≽C on A such that ≽B is compatible
with ≽C. Moreover, ≽C is unique.

Proof. Uniqueness follows from Theorem 1. Assume that ≽B is upper archimedean and strongly
upper nonsatiated. The binary relation ≽C on A defined by Eq. (1) is complete by completeness
of ≽B and upper semi-continuous by definition. Moreover, for all a, a′∈A, a≽Ba′⇒a≽Ca′
and, hence, ≽B is compatible with ≽C. Now, let a, a′∈A such that a≽Ca′, and let V be a
neighborhood of a. Then there exists ā∈V such that ā≽Ba′. Hence, by strong upper nonsatiation
of ≽B, there exists ã∈V such that ã≻Ba′. Hence, by upper archimedeanness of ≽B, there exist
â∈V and a neighborhood V′ of a′ such that â≻Bâ′ for all â′∈V′. It follows that â≻Ca′ by
Eq. (1), so ≽C is strongly upper nonsatiated.

Conversely, assume that there exists a complete, upper semi-continuous and strongly upper
nonsatiated binary relation ≽C onA such that ≽B is compatible with ≽C. Let a, a′∈A such that
a≽Ba′. Then a≽Ca′ by completeness of ≽C and compatibility and, hence, a∈cl(U(≻C, a′)) by
strong upper nonsatiation of ≽C. Hence a∈cl(U(≻B, a′)) by compatibility, so ≽B is strongly
upper nonsatiated. Now, let a, a′∈A such that a≻Ba′, and let V be a neighborhood of a. By the
preceding argument, there exists â∈V such that â≻Ca′. Hence, by completeness of ≽B, there
exists a neighborhood V′ of a′ such that â≻Bâ′ for all â′∈V′, so ≽B is upper archimedean. □

Finally, let us note that Theorems 1 and 2 also hold if upper semi-continuity, strong upper
nonsatiation, and upper archimedeanness are replaced by their lower analogs. More precisely, say
that a binary relation ≽ on a topological space A is:

• lower semi-continuous if, for all a∈A, L(≽, a) is closed,
• weakly lower nonsatiated if, for all a∈A, a∈cl(L(≻, a)),
• strongly lower nonsatiated if, for all a, a′∈A, a≽a′⇒a′∈cl(L(≻, a)),
• lower archimedean if, for all a, a′∈A such a≻a′ and for all neighborhood V′ of a′, there
exist â′∈V′ and a neighborhood V of a such that, for all â∈V, â≻â′.

Eq. (1) then becomes:

a+C a V() a Va clðLð+B; aÞÞ:

Moreover, the upper and lower versions of the results can straightforwardly be combined: say
that a binary relation≽ on a topological spaceA is continuous if it is both upper semi-continuous
and lower semi-continuous, weakly (resp., strongly) nonsatiated if it is both weakly (resp.,
strongly) upper nonsatiated and weakly (resp., strongly) lower nonsatiated, and archimedean if it
is both upper archimedean and lower archimedean.
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5. Monotonic preferences

In his pioneering work on decision making under uncertainty, Savage (1954) mentioned the
problem of indifferent selection, and informally suggested to solve it by adjoining small monetary
bonuses to alternatives. As he argued, cognitive weak preference for a over a′ could then be
behaviorally identified with the observation that any (however small) bonus adjoined to a makes
it chosen over a′. This argument can be formally recovered as a special case of Section 4’s
analysis. More precisely, the essential point about money here is that any strictly positive
monetary bonus can be considered as an objective improvement, i.e., it can be assumed that the
agent always prefers more money.

In order to capture this notion of objective betterness (Cubitt and Sugden, 2001), we assume
that A is a partially ordered set (poset), and denote by ≥⁎ its partial order relation (i.e., ≥⁎ is a
reflexive, antisymmetric, and transitive binary relation onA). If aN⁎a′, we say that a dominates
a′, i.e., a is objectively strictly better than a′. We also assume that the posetA is unbounded (i.e.,
for all a∈A, there exist a′, a″∈A such that a VN⁎aN⁎a″) and dense (i.e., for all a, a′∈A such
that aN⁎a′, there exists a″∈A such that aN⁎a″N⁎a′).

The monetary incentives setup corresponds to the following special case: assume A¼ B�ℝ,
where B is an arbitrary set of basic alternatives (on which one wants to elicit the agent’s
preferences), and ℝ stands for the set of monetary payoffs. Thus the alternative (b, ε)∈A
corresponds to the basic alternative b with an adjoined monetary bonus ε (note that ℝ can be
reduced to any open interval). Define the partial order ≥⁎ on A by, for all (b, ε), (bV, εV)∈B�ℝ,

ðb; eÞz⁎ðb V; e VÞ () ½b ¼ b V and ez e V�:

Then≥⁎ is unbounded (meaning that a positive or negative monetary bonus can be adjoined to
any alternative in A) and dense (reflecting perfect divisibility of money). Note that, more
generally, ℝ could be replaced by any set naturally endowed with an unbounded and dense order
(i.e., complete partial order), e.g., representing quality of some good (higher quality is better), or
time (earlier is better). Besides these special cases in which incentives correspond to a separate
dimension of alternatives, the general setup applies ifA is, e.g., a commodity space (≥⁎ being the
natural vector order on ℝn) or a space of lotteries or acts whose outcomes are commodity bundles
(≥⁎ being the first-order stochastic dominance relation).

Given a binary relation≽ on a posetA, define the binary relation≽⁎ onA by, for all a, aV∈A,

a+⁎a V() UðN⁎; aÞpUðd; a VÞ;

i.e., a≽⁎a′ if and only if any alternative dominating a is strictly preferred to a′, and say that ≽
is:

• weakly upper monotonic if, for all a∈A, a≽⁎a,
• strongly upper monotonic if, for all a, a′∈A, a≽a′⇒a≽⁎a′.

As for nonsatiation, weak upper monotonicity is the usual requirement that dominating
alternatives are strictly preferred, and strong upper monotonicity (which implies the weak version
provided that ≽ is reflexive) follows from it if ≽ is transitive but must be independently stated
otherwise. It is intuitively straightforward that monotonicity implies nonsatiation: by unbounded-
ness of A, any alternative a∈A is dominated by some a′ and by denseness of A this aVcan be
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taken arbitrarily close to a, so no a cannot be a local maximum if≽ is monotonic. To establish this
statement (and others) formally, we endow A with the partial order topology (i.e., the topology
generated by the subbasis [aaA {U(N⁎, a), L(N⁎, a)}, which is well-defined by unboundedness
of A). We then obtain:

Lemma 2. Let ≽ be a complete and strongly upper monotonic binary relation on an unbounded
and dense poset A. Then:

(a) ≽ is strongly upper nonsatiated,
(b) ≽ is upper semi-continuous if and only if, for all a, a′∈A, a≽⁎a′⇒a≽a′,
(c) ≽ is upper archimedean if and only if, for all a, a′, â∈A such that [âN⁎a and a≻a′],

there exists â′∈A such that [â≻â′ and â′N⁎a′].

Proof.

(a) Let a, a′∈A such that a≽a′ and let V be a neighborhood of a. By unboundedness of A,
there exists ã∈A dominating a such that V contains all â∈A such that [ãN⁎â and âN⁎a].
By denseness of A, there exists such a â. By strong upper monotonicity of ≽, â≻a′ and,
hence, a∈cl(U(≻, a′)).

(b) Assume that ≽ is upper semi-continuous, let a, a′∈A such that a ≥⁎ a′, and let V be a
neighborhood of a. By the preceding argument, there exists â∈V such that âN⁎a and,
hence, â≻a′, so a≽a′. Conversely, assume that, for all a, a′∈A, a≽⁎a′⇒a≽a′, and let
a, a′∈A such that a∈cl(U(≽, a′)). For all â∈A such that âN⁎a, L(N⁎, â) is a
neighborhood of a and, hence, there exists ã∈L(N⁎, â) such that ã≽a′. By strong upper
monotonicity of ≽, this implies â≻a′. Hence a≽⁎a′ and, hence a≽a′.

(c) Assume that≽ is upper archimedean, and let a, a′, â∈A such that [âN⁎a and a≻a′]. Then
L(N⁎, â) is a neighborhood of a and, hence, there exist ã∈L(N⁎, â) and a neighborhood V′
of a′ such that ã≻ã′ for all ã′∈V′. Hence â≻ã′ for all â′∈V′ by strong upper mono-
tonicity of ≽ and, in particular, â≻â′ for some â′∈V′ such that â′N⁎a′. Conversely,
assume that, for all a, a′, â∈A such that [âN⁎a and a≻a′], there exists â′∈A such that
[â≻â′ and â′N⁎a′]. Let a, a′∈A such that a≻a′ and let V be a neighborhood of a.
Then there exists â∈V such that âN⁎a and, hence, there exists â′∈A such that [â≻â′ and
â′N⁎a′]. It follows that L(N⁎, â′) is a neighborhood of a′. Now, suppose there exists ã′∈L
(N⁎, â′) such that not â≻ã′. Then ã′≽â by completeness of ≽ and, hence, â′≻â by strong
upper monotonicity of ≽, a contradiction. □

Note that the weak version of part (a) also holds: if ≽ is weakly upper monotonic, then it is
weakly upper nonsatiated. Parts (b) and (c) give restatements of the preceding section’s topological
properties given the order structure assumed in the present section. In particular, archimedeanness
now more transparently reflects the property that small changes in alternatives have a small effect
on preference: if a≻a′ and some (however small) bonus is adjoined to a (yielding the alternative
â), then it must be possible to adjoin some (small enough) bonus to a′ (yielding the alternative â′ )
so as to preserve the relation â≻â′. We obtain analogs of Theorems 1 and 2 in this setup:

Theorem 3. Let ≽B and ≽C be two complete binary relations on an unbounded and dense poset
A such that ≽B is compatible with ≽C. If ≽C is upper semi-continuous and strongly upper
monotonic, then ≽C=≽B⁎ .
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Proof. Let a, a′∈A. If a≽Ca′, then a≽C
⁎ a′ by strong upper monotonicity of ≽C and, hence,

a≽B
⁎ a′ by compatibility. Conversely, if a≽B

⁎ a′, then â≽Ca′ for all â∈A such that âN⁎a by
completeness of ≽C and compatibility. Now, for all â∈A such that âN⁎a, there exists ã∈A
such that âN⁎ãN⁎a by denseness ofA and, hence, â≻Ca′ by strong upper monotonicity of ≽C.
Hence a≽C

⁎ a′ and, hence, a≽Ca′ by upper semi-continuity of ≽C. □

Theorem 4. Let≽B be a complete binary relation on an unbounded and dense posetA. Then≽B is
upper archimedean and strongly upper monotonic if and only if there exists a complete, upper semi-
continuous and strongly upper monotonic binary relation ≽C onA such that ≽B is compatible with
≽C. Moreover, ≽C is unique.

Proof. Assume that ≽B is upper archimedean and strongly upper monotonic. By Theorem 2, it is
sufficient to show that the binary relation≽C onA defined by Theorem 1 is strongly upper monotonic.
Let a, a′, â∈A such that a≽Ca′ and âN⁎a. Then L(N⁎, â) is a neighborhood of a and, hence, there
exists ā∈L(N⁎, â) such that ā≽Ba′. By denseness ofA, there exists ã∈L(N⁎, â) such that ãN⁎ā and,
hence ã≻Ba′ by strong upper monotonicity of≽B . Hence, by upper archimedeanness of≽B, there exist
ǎ∈L(N⁎, â) and a neighborhoodV′ of a′ such that ă≻Bâ′ for all â′∈V′. By strong upper monotonicity
of ≽B, it follows that â≻Bâ′ for all â′∈V′. Hence not a′≽Ca, i.e., a≻Ca′ by completeness of ≽C.
Conversely, assume that there exists a complete, upper semi-continuous and strongly upper monotonic
binary relation≽C onA such that≽B is compatiblewith≽C. ByTheorem2, it is sufficient to show that
≽B is strongly upper monotonic. Let a, a′∈A such that a≽Ba′. Then a≽Ca′ by completeness of≽C

and compatibility and, hence a≽C
⁎ a′ by strong upper monotonicity of ≽C. Hence a≽B

⁎ a′ by
compatibility. □

As in the general case, lower versions of weak and strong monotonicity can be defined and the
corresponding results follow. Moreover, the upper and lower results can be combined, but note that
strong upper monotonicity and strong lowermonotonicity are equivalent for a complete binary relation
(and similarly for weak monotonicity).

6. Pseudo-utility

It is well-known (Cantor, 1895) that a complete binary relation≽ on a setA is representable by a
utility function (i.e., there exists a function u:A→ℝ such that, for all a, a′∈A, u(a)≥u(a′)⇔a≽a′)
if and only if it is transitive and separable (i.e., there exists a countable subsetA ofA such that, for all
a, a′∈A such that a≻a′, there exists â∈A such that a≽â≽a′). Now, in the present setup, starting
froma complete binary relation≽B on a topological spaceA, we derive a complete binary relation≽C

and, if ≽C is transitive and separable, it can be represented by a utility function u, even though ≽B

might be neither transitive nor separable. Furthermore, because≽C is continuous, we know that u can
be taken continuous provided thatA satisfies certain topological properties (Eilenberg, 1941;Debreu,
1954; Rader, 1963), even though ≽B might be discontinuous. Thus, the present analysis can yield
generalizations of classical results on representation of preferences by continuous utility functions.

Because ≽B is compatible with ≽C but might not be equal to ≽C, a utility function u
representing ≽C does not in general represent ≽B in the classical sense, but in the following,
weaker sense (Moulin, 1988; Subiza and Peris, 1998):

Definition 2. A function u:A→ℝ is a pseudo-utility representation of a binary relation≽B on a
set A if, for all a, aV∈A, u(a)Nu(aV)⇒a≻Ba V.
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A pseudo-utility representation u is not a full utility representation because it looses infor-
mation on the preference relation between alternatives a, a′∈A such that u(a)=u(a′) (i.e., in the
present framework, on indifferent selection). For this reason, a constant u is a pseudo-utility
representation of any binary relation and, therefore, additional restrictions must be imposed for
the representation to be of interest. Subiza and Peris (1998) assume that A is a topological space
(endowed with some finite measure) and require u to be continuous and nontrivial (i.e., if [a≻Bâ
and â≻Ba′] for all â in some open subset of A, then u(a)Nu(a′)). In the present setup, by
nonsatiation of ≽C, a stronger requirement than nontriviality can be imposed: say that u is locally
unbounded above if, for all open subset V of A, arg maxa∈V u(a)= =0.

Lemma 3. Let ≽B be a binary relation on a topological space A and u be a pseudo-utility
representation of ≽B. If u is locally unbounded above, then it is nontrivial.

Proof. Assume that u is locally unbounded above, and let a, a′∈A such that [a≻Bâ and â≻Ba′]
for all â in some open subset VofA. Then u(a)≥u(â) and u(â)≥u(a′) because u is a pseudo-utility
representation of≽B. Moreover, by local unboundedness of u, it is not possible that u(a)=u(â) for all
â∈V. Hence there must exist â∈V such that u(a)Nu(â) and, hence, u(a)Nu(a′), so a≻Ba′. □

In order to establish pseudo-utility representation results, we need to characterize those behavioral
preference relations≽B onA for which the cognitive preference relation≽C onA defined by Eq. (1) is
transitive. Say that a binary relation≽ on a topological spaceA is upper closure-transitive if, for all a,
a′,a″∈A, [a∈cl(U(≽,a′)) anda′∈cl(U(≽,a″))]⇒a∈cl(U(≽,a″)). In the present setup, upper closure-
transitivity isweaker than transitivity, but still yields equivalencebetweenweakand strongnonsatiation:

Lemma 4. Let ≽ be a complete, upper archimedean, and weakly upper nonsatiated binary
relation on a topological space A. Then:

(a) if ≽ is transitive, then it is upper closure-transitive,
(b) if ≽ is upper closure-transitive, then it is strongly upper nonsatiated.

Proof.

(a) Assume that ≽ is transitive, let a, a′, a″∈A such that [a∈cl(U(≽, a′)) and a′∈cl(U(≽,
a″))], and let V be a neighborhood of a. Then there exists â∈V such that â≽a′. By weak
upper nonsatiation of ≽, there exists ã∈V such that ã≻â and, hence, ã≻a′ by
transitivity of ≽. Hence, by upper archimedeanness of ≽, there exist ā∈V and a
neighborhood V′ of a′ such that ā≻â′ for all â′∈V′. Moreover, there exists ã′∈V′ such
that ã′≽a″ and, hence, ã≻â″ by transitivity of ≽, so a∈cl(U(≽, a″)).

(b) Assume that ≽ is upper closure-transitive, let a, a′∈A such that a≽a′, and let V be a
neighborhood of a. Then, by weak upper nonsatiation of≽, there exists â∈V such that â≻a.
Hence, by upper archimedeanness of≽, there exist ã∈Vand a neighborhood V̄ of a such that
ã≻ā for all ā∈ V̄ . Now, suppose there does not exist ǎ∈V such that ǎ≻a′. Then a′≽ ǎ for all
ǎ∈V by completeness of ≽ and, hence, a∈cl(U(≽, ǎ )) for all ǎ∈V by upper closure-
transitivity of≽, a contradiction. Hence there exists ǎ∈V such ǎ≻a′, so a∈cl(U(≻, a′)). □

Note that the converse of part (a) does not hold: upper closure-transitivity is strictly weaker than
transitivity. For example, consider the commodity space A¼ ℝ2 of Section 3 and the behavioral
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preference relation≽B onA defined therein, and amend≽B by assuming (2, 0)≻B (1, 1)≻B (0, 2)
≻B (2, 0). Then ≽B is not transitive, but it is upper closure-transitive (upper closure-transitivity of
≽B is equivalent to transitivity of the third cognitive relation ≽C defined in the example,
independently of the latter amendment of ≽B).

We obtain a generalization of Rader (1963)’s representation result on a second-countable
topological space:

Theorem 5. Let ≽B be a complete binary relation on a second-countable topological space A.
Then≽B is upper archimedean, weakly upper nonsatiated and upper closure-transitive if and only
if there exists an upper semi-continuous and locally unbounded above pseudo-utility repre-
sentation u of ≽B. Moreover, u is unique up to a strictly increasing transformation f: u(A) → ℝ
such that fou is upper semi-continuous.

Proof. Assume that ≽B is upper archimedean, weakly upper nonsatiated and upper closure-
transitive. Then, by Theorem 2 and Lemma 4, there exists a complete, upper semi-continuous and
weakly upper nonsatiated binary relation ≽C on A such that ≽B is compatible with ≽C.
Moreover, ≽C is transitive by Theorem 1 and Lemma 4. Because A is second-countable, it
follows from Rader (1963)’s result that there exists an upper semi-continuous utility
representation u of ≽C. Moreover, u is locally unbounded above by weak upper nonsatiation
of ≽C. Finally, u is a pseudo-utility representation of ≽B because ≽B is compatible with ≽C.

Conversely, assume that there exists an upper semi-continuous and locally unbounded above
pseudo-utility representation u of ≽B. Define the binary relation ≽C on A by, for all a, aV∈A,
a≽Ca′⇔u(a)≥u(a′). Then u is a utility representation of ≽C and, hence, ≽C is complete,
transitive, and upper semi-continuous. Moreover, ≽C is weakly upper nonsatiated because u is
locally unbounded above, and ≽B is compatible with ≽C because u is a pseudo-utility
representation of ≽B. Hence ≽B is upper archimedean and weakly upper nonsatiated by Theorem
2 and Lemma 4. Moreover, ≽B is upper closure-transitive by Theorem 1 and Lemma 4.

For the uniqueness part, let u be an upper semi-continuous and locally unbounded above
pseudo-utility representation of ≽B and let f: u(A)→ℝ. Clearly, if f is strictly increasing then
f○u is also a locally unbounded above pseudo-utility representation of ≽B. Conversely, if
f○u is a locally unbounded above pseudo-utility representation of ≽B then, for all a, a V∈A,
u(a)Nu(aV)⇒a≻BaV⇒ f○u(a)≥ f○u(aV). Moreover, suppose there exist a, a V∈A such that
[u(a)Nu(aV) and f○u(a)= f○u(aV)]. Then V={â∈A: u(a)Nu(â)} is an open subset of A by
upper semi-continuity of u and a V∈arg maxâ∈V f○u(â), a contradiction because f○u is locally
unbounded above. Hence f is strictly increasing. □

In order to get a lower version of this result, say that a binary relation ≽ on a topological
space A is lower closure-transitive if, for all a, aV, aW∈A, [a V∈cl(L(≽, a)) and aW∈cl(L(≽,
aV))]⇒aW∈cl(L(≽, a)), and say that a function u: A → ℝ is locally unbounded below if, for
all open subset V of A, arg mina∈V u(a)= =0. The analog of Theorem 5 then holds. Moreover,
the two results can be combined, yielding a generalization of Debreu (1954)’s representation
result. Say that ≽ is closure-transitive if it is both upper closure transitive and lower closure-
transitive, and that u is locally unbounded if it is both locally unbounded above and locally
unbounded below.

Theorem 6. Let ≽B be a complete binary relation on a second-countable topological space A.
Then ≽B is archimedean, weakly nonsatiated and closure-transitive if and only if there exists a
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continuous and locally unbounded pseudo-utility representation u of ≽B. Moreover, u is unique
up to a strictly increasing transformation f: u(A) → ℝ such that f○u is continuous.

We conclude with a generalization of Eilenberg (1941)’s representation result on a first-
countable and connected topological space:

Theorem 7. Let≽B be a complete binary relation on a first-countable and connected topological
space A. Then ≽B is archimedean, weakly nonsatiated and closure-transitive if and only if there
exists a continuous and locally unbounded pseudo-utility representation u of ≽B. Moreover, u is
unique up to a strictly increasing and continuous transformation.

The proofs of Theorems 6 and 7 are similar to that of Theorem 5 and, therefore, omitted. Note
that in Theorem 7, connectedness of A yields a stronger uniqueness result (Wakker, 1991).

7. Conclusion

This paper shows that preferences can be derived from choice behavior in a way that is
robust to indifferent selection. More precisely, a suggestion by Savage (1954) to reveal indifferent
selection by considering small monetary perturbations of alternatives is formalized in a general
topological setup, and is found to essentially rely on an assumption of continuity of preferences.

Although Savage (1954)’s argument is well known, it is seldomused to elicit indifference in practice.
Rather, the experimental literature generally resorts to such devices as randomization or delegation. A
possible defense of this standard practice is that the monetary perturbation method, although more
satisfactory in theory, is impossible to implement because there is no such thing as an infinitely small
monetary bonus in practice. Nevertheless, using some small bonus as an approximation could still
represent an improvement over the usual elicitation methods. For example, if an experimental study
provides evidence of some strict preference pattern violating a standard axiom, then such evidence could
be strengthened by checking for robustness of the pattern to the adjunction of this small bonus.
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