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Abstract

We analyze the preference aggregation problem without the assumption that individuals and society
have fully determined and observable preferences. More precisely, we endow individuals and society with
sets of possible von Neumann–Morgenstern utility functions over lotteries. We generalize the classical
Pareto and Independence of Irrelevant Alternatives axioms and show they imply a generalization of the
classical neutrality assumption. We then characterize the class of neutral social welfare functions. This
class is considerably broader for indeterminate than for determinate utilities, where it basically reduces to
utilitarianism. We finally characterize several classes of neutral social welfare functions for indeterminate
utilities, including the utilitarian and “multi-utilitarian” classes.
© 2012 Elsevier Inc. All rights reserved.

JEL classification: D71; D81

Keywords: Aggregation; vNM utility; Indeterminacy; Neutrality; Utilitarianism

✩ We thank Philippe Mongin, three referees, and an associate editor for useful comments and discussions, as well as

audience at London School of Economics, Université Paris Descartes, École Polytechnique, and D-TEA 2010. Financial
support from ANR ComSoc (ANR-09-BLAN-0305-03) is gratefully acknowledged.

* Corresponding author.
E-mail addresses: Eric.Danan@u-cergy.fr (E. Danan), thibault.gajdos@univmed.fr (T. Gajdos),

ean-marc.tallon@univ-paris1.fr (J.-M. Tallon).
0022-0531/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jet.2012.12.018

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jet.2012.12.018
http://www.elsevier.com/locate/jet
mailto:Eric.Danan@u-cergy.fr
mailto:thibault.gajdos@univmed.fr
mailto:ean-marc.tallon@univ-paris1.fr
http://dx.doi.org/10.1016/j.jet.2012.12.018
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jet.2012.12.018&domain=pdf


664 E. Danan et al. / Journal of Economic Theory 148 (2013) 663–688
1. Introduction

A common feature of social choice theory is the assumption that individual have completely
determined preferences or utilities, that are fully identified by the social planner. Such an as-
sumption might, however, seem very demanding. First, individuals may envision more than one
utility function, either because their preferences are incomplete (Aumann [2], Bewley [3], Dubra
et al. [11], Evren and Ok [12]), or because they are uncertain about their tastes (Cerreia-Vioglio
[5], Dekel et al. [10], Koopmans [15], Kreps [16]), or because they are driven by several “selves”
or “rationales” (Ambrus and Rozen [1], Green and Hojman [13], Kalai et al. [14], May [17]).
Second, even if all individuals have single, fully determined utility functions, fully identifying
them may be either infeasible or too costly, so that the social planner may be unable or unwilling
to assign a precise utility function to each individual (C. Manski [6,7]).

This paper proposes a first step towards a social choice theory allowing for situations in which
individuals have only partially determined preferences or utilities. In order to account for such
situations, we endow individuals with sets of utility functions. Such a set represents the possible
utility functions the individual may have, according to the social planner. The particular case
where this set is a singleton then corresponds to the standard setting in which the individual has
a single, fully determined utility function. We shall say that the utility function is determinate in
this case and indeterminate otherwise, to summarize the different situations mentioned above.

We consider risky alternatives and study social welfare functions mapping profiles of individ-
ual von Neumann–Morgenstern (henceforth vNM) utility sets to social vNM utility sets. In this
setting, when utility functions are determinate, classical Pareto and Independence of Irrelevant
Alternatives axioms lead to a very specific and tractable form of the social welfare function:
utilitarianism (Coulhon and Mongin [8]). Specifically, the Pareto and Independence of Irrele-
vant Alternatives axioms together yield a classical neutrality property: the social utility level is a
function of the individual utility levels only. Linearity of the vNM utility function then straight-
forwardly implies linearity of the social utility level in the individual utility levels. Hence, the
social utility function is a linear combination of the individual utility functions.

As it turns out, moving from determinate to indeterminate utilities makes things much more
complex even in this simple setting. First, in general, there is not a single utility level, but a set
(in fact, an interval) of possible utility levels for each alternative, so that the classical neutrality
property cannot be used. Natural generalizations of the Pareto and Independence of Irrelevant
Alternatives axioms nevertheless yield a generalized “interval-neutrality” property: the social
utility interval is a function of the individual utility intervals only. Second, linearity of vNM util-
ity functions does not imply any linearity property for utility intervals. It however yields weaker
convexity properties which, together with other regularity properties, allow us to express the so-
cial utility interval as a union of linear combinations of individual utility intervals. Third, pinning
down the utility intervals for all alternatives is not enough to fully pin down the social utility set.
Despite this, the generalized axioms are powerful enough to yield full-fledged characterization
results.

The remainder of the paper is built as follows. Section 2 describes the setup and the gen-
eralized Pareto and Independence of Irrelevant Alternatives axioms. In Section 3 the interval-
neutrality property is defined and shown to be implied by the Pareto and Independence of
Irrelevant Alternatives axioms, and a characterization of interval-neutral social welfare functions
is provided. This characterization of interval neutrality, although falling short of fully pinning
down the social utility set, is the key technical step towards full-fledged characterization results,
which are obtained in Section 4. In particular, the classes of utilitarian and “multi-utilitarian”



E. Danan et al. / Journal of Economic Theory 148 (2013) 663–688 665
social welfare functions are characterized, and their degree of “social indeterminacy” is ana-
lyzed. Section 5 provides generalizations of the preceding results to more general alternatives
and domains. Section 6 concludes. Proofs are gathered in Appendix A.

2. Setup

Let X be a non-empty set of social alternatives. We assume that X is a set of probability
measures (lotteries) over a non-empty set Z of social (sure) outcomes and that, furthermore, X is
convex and contains all probability measures on Z with finite support (simple lotteries). Thus
we may for instance take X to be the set of all probability measures on Z with finite, countable,
or (if a topology on Z is given) compact support. We will maintain this assumption on X until
Section 5, in which we will consider more general sets of alternatives. Given two alternatives
x, y ∈ X and a number λ ∈ [0,1], we let xλy denote the convex combination λx + (1 −λ)y ∈ X.

A utility function u on X associates to each alternative x ∈ X a utility level u(x) ∈R. A utility
function u on X is a vNM utility function if it is affine, i.e. if u(xλy) = λu(x) + (1 − λ)u(y)

for all x, y ∈ X and all λ ∈ [0,1]. Let P ⊆ RX denote the set of all vNM utility functions on X.
P is a linear subspace of RX and contains all constant functions. Given a real number γ ∈R, we
abuse notation by also letting γ denote the corresponding constant function in P .

We consider non-empty sets of utility functions, i.e. non-empty subsets of RX . Our interpre-
tation of such a set is that the utility function may possibly be any member of the set, without
further information being available. The utility function is determinate if the set is a singleton
and indeterminate otherwise. We restrict attention to sets of vNM utility functions. More pre-
cisely, let P denote the set of all non-empty, compact, and convex subsets of P , where P is
endowed with the subspace topology and RX with the product topology. Note that P contains in
particular all convex hulls of finite sets of vNM utility functions on X and, hence, all singletons.

A vNM utility set U ∈ P can be seen as representing an underlying preference relation �
over alternatives in X, in the sense that for all x, y ∈ X,

x � y ⇔ [∀u ∈ U, u(x) � u(y)
]
. (1)

The special case where U is a singleton then corresponds to standard expected utility preferences
(von Neumann and Morgenstern [19]). When U is not a singleton, on the other hand, the pref-
erence relation � is incomplete, i.e. there are alternatives x, y ∈ X such that neither x � y nor
y � x (unless all elements of U are positive affine transformations of one another), but satisfies
all the other standard vNM axioms. Shapley and Baucells [23] axiomatize the existence of a
closed and convex subset U of P satisfying (1), whereas Dubra et al. [11], assuming X is the
set of all Borel probability measures on a compact metric space Z, axiomatize the existence of a
closed and convex set U of continuous functions in P satisfying (1).1

Let I be a non-empty and finite set of individuals. Given a non-empty domain D ⊆ PI ,
a social welfare function F on D associates to each profile (Ui)i∈I ∈ D of individual (vNM)

1 Neither of these two results fully characterize the existence of a utility set U ∈ P satisfying (1). Indeed, the set
U in the former result cannot be taken to be compact in general. However, a sufficient condition for the existence of a
compact U is that all functions in U be bounded (since we can then scale all these functions down to range within a given
bounded interval and then take the closure of the convex hull of these scaled functions), and this sufficient condition will
obtain in particular if either Z is finite or X contains all probability measures on Z with countable support. The set U

in the latter result, on the other hand, can always be taken to be compact (because all utility functions in this set are
necessarily bounded), but the additional continuity property rules out some members of P , unless Z is finite.
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utility sets a social (vNM) utility set U = F((Ui)i∈I ) ∈ P . We will maintain the assumption that
D = PI from now on, and will relax it in Section 5.

The most classical axioms for social welfare functions with determinate utilities are the Pareto
and Independence of Irrelevant Alternatives axioms. Both of them can be generalized to inde-
terminate utilities. The Pareto Indifference (resp. Pareto Weak Preference) axiom requires that if
all individuals are indifferent between alternatives x and y (resp. weakly prefer x to y) then so
does society. To the extent that a utility set U ∈ P can be seen as representing an underlying
preference relation in the sense of (1), it is natural to generalize the Pareto axioms to utility sets
as follows.

Axiom 1 (Pareto Indifference). For all (Ui)i∈I ∈ D and all x, y ∈ X, if ui(x) = ui(y) for all
ui ∈ Ui and all i ∈ I then u(x) = u(y) for all u ∈ F((Ui)i∈I ).

Axiom 2 (Pareto Weak Preference). For all (Ui)i∈I ∈ D and all x, y ∈ X, if ui(x) � ui(y) for all
ui ∈ Ui and all i ∈ I then u(x) � u(y) for all u ∈ F((Ui)i∈I ).

Independence of Irrelevant Alternatives essentially requires the social ranking between al-
ternatives x and y to depend only on the individual rankings between x and y. Again, to the
extent that a utility set U ∈ P can be seen as representing an underlying preference relation
in the sense of (1), it is natural to view the ranking between x and y as determined by the set
{(u(x),u(y)): u ∈ U}. Let us introduce the following notation: given a subset Y of X and a
utility set U ∈ P , let U |Y denote the restriction of U to Y , i.e. U |Y = {u|Y : u ∈ U}.2 We thus
generalize the Independence of Irrelevant Alternatives axiom to utility sets as follows.

Axiom 3 (Independence of Irrelevant Alternatives). For all (Ui)i∈I , (U
′
i )i∈I ∈ D and all

x, y ∈ X, if Ui |{x,y} = U ′
i |{x,y} for all i ∈ I then F((Ui)i∈I )|{x,y} = F((U ′

i )i∈I )|{x,y}.

For a social welfare function with determinate utilities, Independence of Irrelevant Alterna-
tives implies that the restriction of the social utility function to any finite subset of alternatives
depends only on the restrictions of the individual utility functions to this subset of alternatives
(Blau [4], D’Aspremont and Gevers [9]). This is simply because any function is fully determined
by its restrictions to all pairs of elements of its domain. This argument does not hold for indeter-
minate utilities: a set of functions on a common domain is generally not fully determined by the
corresponding sets of restrictions to all pairs of elements of the domain, because there is gener-
ally more than one way of “gluing” together these sets of restrictions. Nevertheless, because we
restrict attention to vNM utility functions, it can in fact be shown that Independence of Irrelevant
Alternatives still implies that the restriction of the social utility set to any finite subset of alterna-
tives depends only on the restrictions of the individual utility sets to this subset of alternatives in
our setting (see Lemma 15 in Appendix A).

3. Interval neutrality

In the classical Arrovian framework, neutrality refers to the fact that if alternatives x and y

are ranked by individuals in a given situation (i.e. for a given profile of individual preferences)

2 Given a function f on a set S and a subset T of S, f |T denotes the function on T defined by f |T (s) = f (s) for all
s ∈ T .
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exactly as alternatives z and w are in another situation, then the social ranking between x and
y in the first situation is the same as the social ranking between z and w in the second one.
In the richer framework of social welfare functions with determinate utilities, neutrality means
that if the individual utility levels of alternatives x and y in a given situation are the same as
the individual utility levels of alternatives z and w in another situation, then the social ranking
between x and y in the first situation is the same as the social ranking between z and w in the
second one (Sen [22]). If profiles of individual utility functions are mapped to social utility func-
tions rather than social preference relations, then neutrality can be simply stated by requiring
that if the individual utility levels of alternative x in a given situation are the same as the indi-
vidual utility levels of alternative y in another situation, then the social utility level of x in the
first situation is the same as the social utility level of y in the second situation (Coulhon and
Mongin [8]).

When the utility function is indeterminate, however, an alternative does not in general have a
single utility level but rather a set (in fact, a non-empty and compact interval) of possible utility
levels. More precisely, given a utility set U ∈ P , let U(x) = U |{x} denote the utility interval
of an alternative x ∈ X. We generalize the neutrality property by requiring that if the individual
utility intervals of alternative x in a given situation are the same as the individual utility intervals
of alternative y in another situation, then the social utility interval of x in the first situation is the
same as the social utility interval of y in the second situation.

Definition 1 (Interval-neutrality). A social welfare function F on a domain D ⊆ PI is interval-
neutral if for all (Ui)i∈I , (U

′
i )i∈I ∈ D and all x, y ∈ X, if Ui(x) = U ′

i (y) for all i ∈ I then
F((Ui)i∈I )(x) = F((U ′

i )i∈I )(y).

For determinate utilities, neutrality is equivalent to the conjunction of Independence of Irrele-
vant Alternatives and Pareto Indifference. This equivalence does not hold in our framework, but,
it is still the case that Independence of Irrelevant Alternatives and Pareto Indifference together
imply interval-neutrality.

Lemma 1. If a social welfare function F on D = PI satisfies Independence of Irrelevant Alter-
natives and Pareto Indifference then F is interval-neutral.

To show that the converse of Lemma 1 does not hold, let Z = {z1, z2, z3}, let X be the
set of all probability measures on Z, and define the social welfare function F on D = PI

by for all (Ui)i∈I ∈ D , F((Ui)i∈I ) = ∑
i∈I Ui if there exist i ∈ I , ui ∈ Ui and z, z′ ∈ Z

such that ui(z) �= ui(z
′) and F((Ui)i∈I ) = {u ∈ P : ∀x ∈ X, u(x) ∈ ∑

i∈I Ui(x)} otherwise.
Then F((Ui)i∈I )(x) = ∑

i∈I Ui(x) for all (Ui)i∈I ∈ D and all x ∈ X, so F is interval-neutral.
Now, let U = conv({0,1}) ∈ P and U ′ = conv({0, u′}) ∈ P , where u′ ∈ P is defined by
u′(z1) = u′(z2) = 1 and u′(z3) = 0. Then F((U)i∈I )|{z1,z2} = [0,1]2, so F does not satisfy Pareto
Indifference. Moreover, U ′|{z1,z2} = U |{z1,z2} and F((U ′)i∈I )|{z1,z2} = conv({(0,0), (1,1)}) �=
F((U)i∈I )|{z1,z2}, so F does not satisfy Independence of Irrelevant Alternatives either.

For determinate utilities, neutrality plays a key role by carrying linearity of vNM utility func-
tions into linearity of the social welfare function. For indeterminate utilities this is no longer the
case, because vNM utility intervals do not enjoy the linearity property that vNM utility levels
do. But vNM utility intervals still exhibit some (weaker) structure and, in particular, convexity
properties.
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Fig. 1. Example of set of utility functions.

Lemma 2.

(a) For all U ∈ P , x, y ∈ X, and λ ∈ [0,1], U(xλy) ⊆ λU(x) + (1 − λ)U(y).
(b) For all U ∈ P , x, y ∈ X, and λ ∈ [0,1], λmaxU(x) + (1 − λ)minU(y) ∈ U(xλy).

To illustrate Lemma 2, consider the example represented in Fig. 1. The set of outcomes is
Z = {z1, z2} and the set X of alternatives is the set of all probability measures on Z. The table
on the left-hand side defines four utility functions u1, u2, u3, u4 ∈ P . These utility functions are
depicted on the right-hand side graph, in which the thick horizontal segment represents X and
the utility level of each alternative x ∈ X is measured along the corresponding vertical axis. The
set U = conv({u1, u2, u3}) of utility functions (i.e. all convex combinations of u1, u2, and u3)
fills the shaded area on the graph.3 The utility interval U(x) of an alternative x ∈ X corresponds
to the intersection of the corresponding vertical axis with this shaded area.

Lemma 2(a) states that although affinity of vNM utility functions does not extend to utility
intervals, in the sense that one would have U(xλy) = λU(x) + (1 − λ)U(y), an inclusion re-
lation nevertheless holds. Equivalently, the function x 	→ maxU(x) is convex and the function
x 	→ minU(x) is concave. Lemma 2(b) states that although the shaded area on the graph is not
convex, it still contains all line segments joining the maximum of a utility interval with the min-
imum of another utility interval, i.e. λmaxU(x) + (1 − λ)minU(y) ∈ U(xλy). This establishes
a relationship between the two functions just defined.

Armed with this lemma, we obtain the following characterization of interval-neutrality.

Theorem 1. Assume Z contains at least two elements. Then a social welfare function F on
D = PI is interval-neutral if and only if there exists a non-empty, compact, and convex set
Φ ⊂ (RI+)2 ×R such that, for all (Ui)i∈I ∈ D and all x ∈ X,

F
(
(Ui)i∈I

)
(x) =

⋃
(α,β,γ )∈Φ

(∑
i∈I

αiUi(x) −
∑
i∈I

βiUi(x) + γ

)
. (2)

Moreover, Φ can be taken such that (2) holds for some non-empty, compact, and convex set
Φ ′ ⊂ (RI+)2 ×R if and only if Φ ⊆ Φ ′ ⊆ {(α − η,β − η, γ ): (α,β, γ ) ∈ Φ,η ∈RI+}.

3 Given a set S, conv(S) denotes the convex hull of S.
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Thus a social welfare function F is interval-neutral if and only if the social utility interval
is the union of a set of affine transformations of all individual utility intervals, with individual
i’s utility interval entering twice in each affine transformation, once with a non-negative coeffi-
cient αi and once with a non-positive coefficient −βi . Moreover, the set Φ of weight-constant
vectors (α,β, γ ) is “almost” unique in the sense that, first, there exists a unique Φ that is minimal
with respect to set inclusion and, second, another set Φ ′ satisfies (2) if and only if it consists in
the minimal Φ to which are added weight-constant vectors that are always irrelevant to the social
utility interval. Indeed, it is easily checked that, for all utility interval Ui(x), if αi � αi − ηi � 0
and βi � βi − ηi � 0 then (αi − ηi)Ui(x) − (βi − ηi)Ui(x) ⊆ αiUi(x) − βiUi(x).

It is interesting to compare the characterization (2) of interval-neutrality we obtain for in-
determinate utilities with a set-valued version of the characterization of neutrality obtained by
Coulhon and Mongin [8] for determinate utilities, namely:

F
(
(Ui)i∈I

) =
∑
i∈I

θiUi + γ, (3)

for some θ ∈ RI and γ ∈ R. There are three dimensions along which (2) is more general than (3):

(i) In (2) the social utility interval is made of several affine combinations of all individual utility
intervals, rather than a single one as in (3).

(ii) In (2) each individual i’s utility interval enters twice in each affine transformation rather
than once (so (3) corresponds to the particular case where either αi = 0 or βi = 0). To
illustrate this point, let I = {1,2} and consider the two social welfare functions F1(U1,U2) =
U1 + U2 and F2(U1,U2) = 2(U1 + U2) − (U1 + U2), which obviously satisfy (2). F1 uses
only one weight per individual whereas F2 uses two. These two functions agree if both U1(x)

and U2(x) are singletons, but otherwise F1 yields a smaller utility interval than F2. For
instance, F1([0,1], [0,1]) = [0,2] ⊂ [−2,4] = F2([0,1], [0,1]). More generally, for any
social welfare function F satisfying (2), we have

F
(
(Ui)i∈I

)
(x) =

⋃
(α,β,γ )∈Φ

{∑
i∈I

(
αiui(x) − βivi(x)

) + γ : ui, vi ∈ Ui, i ∈ I

}

⊇
⋃

(α,β,γ )∈Φ

{∑
i∈I

(αi − βi)ui(x) + γ : ui ∈ Ui, i ∈ I

}

=
⋃

(α,β,γ )∈Φ

(∑
i∈I

(αi − βi)Ui(x) + γ

)
,

where, in general, equality holds if and only if Ui(x) is a singleton for all i ∈ I .
(iii) Whereas (3) fully pins down the social set of utility functions, (2) only pins down all social

utility intervals. To illustrate why a utility set is not fully pinned down by all its utility
intervals in general, let us go back to the example depicted in Fig. 1, and note that the set
U ′ = conv({u1, u2, u3, u4}) of utility functions fills the same shaded area on the graph as U

does, so that we have U ′(x) = U(x) for all x ∈ X, although we clearly have U ′ �= U since
u4 /∈ U . This is because U and U ′ only differ in terms of “utility correlations”: in both sets
of utility functions it is possible that the utility level of z1 be equal to 4 and it is also possible
that the utility level of z2 be equal to 1, but in U ′ these two possibilities may arise from the
same utility function whereas in U they cannot.
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Finally, let us briefly sketch the proof of the “only if” part of Theorem 1 (the “if” part is
straightforward). First note that, from interval-neutrality, we know that F((Ui)i∈I )(x) is a func-
tion of (Ui(x))i∈I . Equivalently, both maxF((Ui)i∈I )(x) and minF((Ui)i∈I )(x) are functions
of (maxUi(x),minUi(x))i∈I . Now, these two functions are not necessarily affine but Lemma 2
does impose some structure on them. Most importantly, maxF((Ui)i∈I )(x) is convex, non-
decreasing in each maxUi(x), and non-increasing in each minUi(x), whereas minF((Ui)i∈I )(x)

is concave, non-decreasing in each minUi(x), and non-increasing in each maxUi(x). These two
functions are also Lipschitzian and (up to a change of variable) share the same recession function.
These properties enable us to construct, using standard results on conjugate convex functions, a
common, compact set Φ ⊂ (RI+)2 ×R such that

maxF
(
(Ui)i∈I

)
(x) = max

(α,β,γ )∈Φ

(∑
i∈I

αi maxUi(x) −
∑
i∈I

βi minUi(x) + γ

)
,

minF
(
(Ui)i∈I

)
(x) = min

(α,β,γ )∈Φ

(∑
i∈I

αi minUi(x) −
∑
i∈I

βi maxUi(x) + γ

)
,

which is equivalent to (2).

4. Utilitarianism

As we have seen, Theorem 1 falls short of fully pinning down the social utility set (and hence,
social preferences) because, roughly speaking, utility intervals do not keep track of “utility corre-
lations” between alternatives. Unlike interval-neutrality, Independence of Irrelevant Alternatives
and Pareto Indifference both impose some structure on these correlations. This structure turns
out to be sufficient to obtain a full-fledged characterization of social welfare functions satisfying
these two axioms.

Theorem 2. Assume Z contains at least three elements. Then a social welfare function F on
D = PI satisfies Independence of Irrelevant Alternatives and Pareto Indifference if and only if
there exists a non-empty, compact, and convex set Φ ⊂ (RI+)2 ×R such that, for all (Ui)i∈I ∈ D ,

F
(
(Ui)i∈I

) =
⋃

(α,β,γ )∈Φ

(∑
i∈I

αiUi −
∑
i∈I

βiUi + γ

)
. (4)

Moreover, Φ can be taken such that (2) holds for some non-empty, compact, and convex set
Φ ′ ⊂ (RI+)2 ×R if and only if Φ ⊆ Φ ′ ⊆ {(α − η,β − η, γ ): (α,β, γ ) ∈ Φ, η ∈RI+}.

Unlike the characterization (2) of interval-neutral social welfare functions, (4) fully pins down
the social utility set and not only the utility intervals. Compared with the characterization (3)
obtained by Coulhon and Mongin [8] for determinate utilities, (4) remains more general in the
dimensions (i) and (ii) described above.

Regarding dimension (i), let us recall that in (3) where each individual is assigned one (pos-
itive, negative, or null) weight, strengthening Pareto Indifference to Pareto Weak Preference
ensures that all weights are non-negative, thereby making the social welfare function utilitar-
ian.4 Similarly, in (4) where each individual is assigned one non-negative and one non-positive

4 We call utilitarian any social welfare function in which social utility is a non-negative affine combination of individual
utilities, even if individuals do not have equal weights.
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weight, Pareto Weak Preference ensures that all non-positive weights are equal to zero, so we
obtain the following characterization.

Corollary 1. Assume Z contains at least three elements. A social welfare function F on D = PI

satisfies Independence of Irrelevant Alternatives and Pareto Weak Preference if and only if there
exists a non-empty, compact, and convex set Ω ⊂RI+ ×R such that, for all (Ui)i∈I ∈ D ,

F
(
(Ui)i∈I

) =
⋃

(θ,γ )∈Ω

(∑
i∈I

θiUi + γ

)
. (5)

Moreover, Ω is unique.

Such social welfare functions may be called multi-utilitarian, as they are unions of utilitarian
rules. Each individual is thus assigned a set of weights rather than a single one (note that this
makes the set of weight-constant vectors fully unique). Utilitarian social welfare functions then
correspond to the particular case in which the set of weight-constant vectors is a singleton. To
characterize them we introduce the following axiom.

Axiom 4 (Determinacy Preservation). For all ({ui})i∈I ∈ D , there exists u ∈ P such that
F(({ui})i∈I ) = {u}.

Determinacy Preservation simply requires social utility to be determinate whenever individual
utilities are. We obtain the following characterization of utilitarianism for utility sets.

Corollary 2. Assume Z contains at least three elements. A social welfare function F on D = PI

satisfies Independence of Irrelevant Alternatives, Pareto Weak Preference, and Determinacy
Preservation if and only if there exist a vector θ ∈ RI+ and a number γ ∈ R such that, for all
(Ui)i∈I ∈ D ,

F
(
(Ui)i∈I

) =
∑
i∈I

θiUi + γ. (6)

Moreover, θ and γ are unique.

Note that social welfare functions satisfying (4) (and, hence, those satisfying (5) or (6)) enjoy
the following properties:

(i) For all (Ui)i∈I , (U
′
i )i∈I ∈ D , if there exist a strictly positive real number a and a collection

(bi)i∈I of real numbers such that U ′
i = aUi + bi for all i ∈ I then there exists a real num-

ber b such that F((U ′
i )i∈i ) = aF((Ui)i∈I ) + b. This invariance property, called “cardinal

measurability, unit-comparability”, is already known to be satisfied by utilitarian rules in
the particular case of determinate utilities (D’Aspremont and Gevers [9]).

(ii) For all (Ui)i∈I ∈ D , if F((Ui)i∈I ) is a singleton then, for all i ∈ I , either Ui is a sin-
gleton or αi = βi = 0 for all (α,β, γ ) ∈ Φ . An individual i ∈ I for which αi = βi = 0
for all (α,β, γ ) ∈ Φ is completely “irrelevant” to society, in the sense that for all
(Uj )j∈I , (U

′
j )j∈I ∈ D , F((Uj )j∈I ) = F((U ′

j )j∈I ) whenever Uj = U ′
j for all j ∈ I \ {i}.

Thus, if all individuals are “relevant” then social utility can only be determinate if all indi-
vidual utilities are themselves determinate: society cannot “resolve” individual indetermi-
nacy. For example, one may find it desirable for society to select two profiles (ui)i∈I , (vi)i∈I
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Fig. 2. Example of set of utility functions (continued).

of individual utility functions out of each profile (Ui)i∈I of individual utility sets and use
some affine transformation

∑
i∈I αiui − βivi + γ of the selected individual utility func-

tions as the (determinate) social utility function, but this is incompatible with the axioms of
Theorem 2 (and, in fact, with interval-neutrality).

(iii) For all (Ui)i∈I , (U
′
i )i∈I ∈ D , if Ui ⊆ U ′

i for all i ∈ I then F((Ui)i∈I ) ⊆ F((U ′
i )i∈I ). Thus,

more indeterminacy at the individual level translates to more indeterminacy at the social
level.

(iv) F1((Ui)i∈I ) ⊆ F2((Ui)i∈I ) for all (Ui)i∈I ∈ D if and only if Φ1 ⊆ Φ2. Thus F1 is “socially
more determinate” than F2 if and only if F1 has a smaller set of weight-constant vectors
than F2. Hence, in particular, utilitarian social welfare functions are the socially most de-
terminate social welfare functions satisfying Independence of Irrelevant Alternatives and
Pareto Weak Preference.

Finally, let us briefly sketch the proof of the “only if” part of Theorem 2 (the proof of the
“if” part is straightforward). Beforehand, it is useful to understand in more detail why a set of
utility functions is only partially pinned down by all utility intervals. To this end, let us go back
to the example that we considered in Fig. 1 in Section 3. The definition of the four utility func-
tions u1, u2, u3, u4 ∈ P on the set Z = {z1, z2} is recalled in the left-hand side table of Fig. 2.
The right-hand side graph depicts these utility functions but this time in RZ rather than RX

(this is possible, of course, since a vNM utility function u ∈ P is fully determined by the vector
(u(z1), u(z2)) ∈ RZ). The set U = conv({u1, u2, u3}) of utility functions now corresponds to the
shaded triangle u1u2u3. The utility interval U(x) of alternative x ∈ X (the set X of alternatives
is represented by the thick segment on the graph) can now be visualized as follows: maxU(x)

corresponds to the hyperplane supporting U in the (normal) direction x whereas minU(x) cor-
responds to the hyperplane supporting U in the direction −x.

Being essentially a compact and convex subset of RZ , a set of utility functions is fully
determined by its supporting hyperplanes in all directions of RZ . The utility intervals of all
alternatives, however, only determine these supporting hyperplanes in the non-negative and non-
positive directions and, hence, do not fully pin down the set of utility functions. Thus, the set
U ′ = conv({u1, u2, u3, u4}) of utility functions (corresponding to the quadrilateral u1u2u3u4),
although strictly larger than U , only differs from U in directions with both positive and negative
components and, hence, yields the same utility intervals as U for all alternatives.
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Now for the proof sketch, first note that by Theorem 1, we know there exists a non-empty,
compact, and convex set Φ ⊂ (RI+)2 × R such that (2) holds. In order to strengthen (2) to (4),
it is sufficient to show that two social welfare functions F and F ′ on D = PI satisfying In-
dependence of Irrelevant Alternatives and Pareto Indifference that always yield the same social
utility interval must always yield the same social utility set. Given our topological assumptions
and since we restrict attention to vNM utilities, it turns out to be sufficient to show that F and F ′
must always yield the same restriction of the social utility set to any pair of alternatives.

So suppose there is a profile (Ui)i∈I ∈ D such that F((Ui)i∈I )(x) = F ′(Ui)i∈I (x) for
all x ∈ X but F((Ui)i∈I )|{z1,z2} �= F ′(Ui)i∈I |{z1,z2} for two outcomes z1, z2 ∈ Z. As we
just explained, F((Ui)i∈I )|{z1,z2} and F ′(Ui)i∈I |{z1,z2} must then differ in some direction
of R{z1,z2} with both positive and negative components. For instance, F((Ui)i∈I )|{z1,z2} and
F ′(Ui)i∈I |{z1,z2}, may be the sets U and U ′ of the previous example, which differ in the di-
rection (2,−1) (among others), as 2u4(z1) − u4(z2) > 2u(z1) − u(z2) for all u ∈ U . Take then
an outcome z3 ∈ Z \ {z1, z2} and a profile (Ũi)i∈I ∈ D that agrees with (Ui)i∈I on {z1, z2} and
such that ũi (z3) = 2ũi (z1) − ũi (z2) for all ũi ∈ Ũi and all i ∈ I . By Independence of Irrelevant
Alternatives, we must then have F((Ũi)i∈I )|{z1,z2} = U and F ′(Ũi)i∈I |{z1,z2} = U ′ and, by Pareto
Indifference, we must also have ũ(z3) = 2ũ(z1) − ũ(z2) for all ũ ∈ F((Ui)i∈I ) ∪ F ′((Ui)i∈I ).
Hence the above inequality yields F((Ũi)i∈I )(z3) = [3,6] and 7 ∈ F ′((Ũi)i∈I )(z3), a contradic-
tion.

5. General alternatives and domains

Up to now we have maintained two assumptions in order to simplify the exposition. First,
the set of alternatives is a convex set of probability measures over some set Z of outcomes
containing all probability measures on Z with finite support. Second, the domain of the social
welfare function is the set of all profiles of (vNM) utility sets on X. Our results, however, also
hold for other alternatives and domains. In this section we state general properties of the set of
alternatives and the domain of the social welfare functions that are sufficient for our results and
we discuss some particular settings in which these properties are satisfied.

First, we assume X is a mixture space, i.e. any set endowed with a mixing operation [0,1] ×
X × X → X, (λ, x, y) 	→ xλy, such that for all x, y ∈ X and all λ,μ ∈ [0,1], x1y = x, xλy =
y(1 − λ)x, and (xλy)μy = x(λμ)y. Note that all definitions and axioms introduced so far have
been stated with this general notation and, hence, apply to any mixture space.

Any convex set of probability measures over some set Z of outcomes is a mixture space,
whether it contains all probability measures with finite support or not. Thus, besides all instances
mentioned in Section 2, convex sets of probability measures with continuous or differentiable
density are also mixture spaces. A somewhat different example, that has received recent attention
in the literature, is the set of all compact and convex subsets of any of the above instances of
mixture spaces, interpreted as menus (opportunity sets).

More generally, whenever X is a convex subset of some linear space, defining the mixing
operation xλy = λx + (1 − λ)y by means of the vector addition and scalar multiplication opera-
tions turns it into a mixture space. Such a mixture space, in addition, has the particular property
that any pair of {x, y} ⊆ X of distinct alternatives is separated, i.e. for all r, s ∈ R there exists
u ∈ P such that u(x) = r �= u(y) = s. In fact, Mongin [18] shows that all pairs of distinct al-
ternatives in X are separated if and only if there exists a mixture preserving bijection from X

into a convex subset of some linear space (and that, moreover, the affine dimension of this subset
is unique), and provides examples of mixture spaces in which no, or some but not all, pairs of
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distinct alternatives are separated. Let us say, more generally, that a set Y ⊆ X is separated if, for
all v ∈RY , there exists u ∈ P such that u|Y = v.5

Second, we introduce the following richness conditions on the domain of the social welfare
function:

Definition 2. A domain D ⊆ PI is:

• Indifference-rich if, for all x, y ∈ X and all (Ui)i∈I ∈ D such that Ui(x) = Ui(y) for all i ∈ I ,
there exist z ∈ X and (U ′

i )i∈I , (U
′′
i )i∈I ∈ D such that U ′

i |{x,z} = U ′′
i |{y,z} = {(γ, γ ): γ ∈

Ui(x) = Ui(y)} for all i ∈ I .
• Polygon-rich if, for all non-empty and finite (Vi)i∈I ⊂ (R2)I , there exist x, y ∈ X, x �= y,

and (Ui)i∈I ∈ D such that Ui |{x,y} = conv(Vi) for all i ∈ I .
• Calibration-rich if, for all x, y ∈ X, all (Ui)i∈I ∈ D and all λ ∈ (0,1), there exist z ∈ X and

(U ′
i )i∈I ∈ D such that, for all i ∈ I , U ′|{x,y} = U |{x,y} and u′

i (x) = u′
i (yλz) for all u′

i ∈ U ′
i .

In words, D is indifference-rich if, starting from any profile in D in which each individual has
the same utility intervals for two alternatives x and y, we can always find a third alternative z as
well as a second and a third profile in D in which each individual has the same utility interval
for z as for x or y in the first profile and, furthermore, is indifferent between x and z in the
second profile as well as between y and z in the third profile. D is polygon-rich if every profile
of (convex hulls of) finite sets of pairs of utility levels (polygon) corresponds to the restriction of
some profile in D to some pair of distinct alternatives. Finally, D is calibration-rich if, starting
from any two alternatives x and y, any profile in D , and any coefficient λ strictly between 0 and 1,
we can always find a third alternative z and a second profile in D having the same restriction to
the pair {x, y} as the first profile and in which each individual is indifferent between x and yλz

(by an appropriate calibration of the utility level of z).
Note that polygon-richness requires X to contain a separated pair of alternatives, and

calibration-richness requires X to contain a separated triple of alternatives. If X is a non-empty
and convex subset of some linear space (i.e. if all pairs of distinct alternatives in X are sepa-
rated), then the full domain D is always indifference-rich, is polygon-rich whenever X contains
a separated pair of alternatives (i.e. is of affine dimension at least one), and is calibration-rich
whenever X contains a separated triple of alternatives (i.e. is of affine dimension at least two).

Technically, indifference-regularity is necessary for Independence of Irrelevant Alternatives
and Pareto Indifference to imply interval-neutrality (Lemma 1). Polygon-richness ensures that
any profile of real intervals corresponds to the utility intervals of some alternative in some profile
in the domain, and also allows the construction of some particular profiles in the proof of The-
orem 1. Calibration-richness is needed for the last step in the proof sketch of Theorem (4). Our
results thus generalize as follows.

Proposition 1. Lemma 1 holds for any non-empty mixture space and any indifference-rich do-
main. Lemma 2 holds for any non-empty mixture space. Theorem 1 holds for mixture space
containing a separated pair of alternatives and any polygon-rich domain. Theorem 2, Corol-
lary 1, and Corollary 2 hold for any mixture space containing a separated triple of alternatives
and any indifference-rich, polygon-rich, and calibration-rich domain.

5 More precisely, Mongin [18] defines a pair {x, y} to be separated if there exists u ∈ P such that u(x) �= u(y). Our
definition is equivalent to his for pairs but is more demanding for larger sets.
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6. Conclusion

This paper constitutes a first step towards extending social choice theory to situations in which
individuals may have only partially determined preferences or utilities. Specifically, we adopt a
standard multi-profile setting in which individuals are endowed with vNM utility functions and
introduce indeterminacy by replacing vNM utility functions by sets of vNM utility functions,
such a set representing the possible utility functions the individual may have, according to the
social planner. Whereas it is known that for determinate utilities, basic axioms preclude all but
utilitarian aggregation rules, it turns out that the class of rules satisfying natural generalizations of
these axioms is much richer for indeterminate utilities. This class, and several subclasses (includ-
ing the utilitarian class) can be characterized, although moving from determinate to indeterminate
utilities raises several technical and conceptual issues.

One implication of our results is that in these settings, basic axioms entail some degree of
social indeterminacy: as soon as one individual has indeterminate utility, so must have society. In
other words, there is no possibility for the social planner to “resolve” individual indeterminacies,
as could seem desirable. One possible way out of this impossibility could be to relax the vNM as-
sumption on social preferences (allowing for a max–min criterion, for instance). More generally,
it seems worthwhile investigating whether similar results obtain when introducing indeterminacy
in other social choice settings.

Appendix A. Proofs

We directly state the proofs in the general setting of Section 5.

Proof of Lemma 1. Assume X is a non-empty mixture space, D is an indifference-rich do-
main, and F satisfies Independence of Irrelevant Alternatives and Pareto Indifference. Let
(Ui)i∈I , (U

′
i )i∈I ∈ D and x, y ∈ X such that Ui(x) = U ′

i (y) for all i ∈ I . Since D is indifference-
rich, there exist z ∈ X and (U ′

i )i∈I , (U
′′
i )i∈I ∈ D such that U ′

i |{x,z} = U ′′
i |{y,z} = {(γ, γ ): γ ∈

Ui(x) = Ui(y)} for all i ∈ I . Hence F((Ui)i∈I )(x) = F ′((Ui)i∈I )(x) = F ′((Ui)i∈I )(z) =
F ′′((Ui)i∈I )(z) = F ′′((Ui)i∈I )(y), where the first and third inequalities follow from Indepen-
dence of Irrelevant Alternatives and the second and fourth ones from Pareto Indifference. �
Proof of Lemma 2. Assume X is a non-empty mixture space.

(a) Let U ∈ P , x, y ∈ X, and λ ∈ [0,1]. Then by definition,

U(xλy) = {
u(xλy): u ∈ U

}
= {

λu(x) + (1 − λ)u(y): u ∈ U
}

⊆ {
λu(x) + (1 − λ)v(y): u,v ∈ U

}
= λU(x) + (1 − λ)U(y).

(b) Let U ∈ P , x, y ∈ X, and λ ∈ [0,1]. Then by definition, there exist u,u′ ∈ U such
that u(x) = maxU(x) and u′(y) = minU(y). Suppose λmaxU(x) + (1 − λ)minU(y) >

maxU(xλy). Then λmaxU(x) + (1 − λ)minU(y) > u(xλy) = λu(x) + (1 − λ)u(y). Hence,
since u(x) = maxU(x), it must be that u(y) < minU(y), a contradiction since u ∈ U . Similarly,
suppose λmaxU(x)+ (1−λ)minU(y) < minU(xλy). Then λmaxU(x)+ (1−λ)minU(y) <

u′(xλy) = λu′(x) + (1 − λ)u′(y). Hence, since u′(y) = minU(y), it must be that u′(x) >

maxU(x), a contradiction since u′ ∈ U . �
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Proof of Theorem 1. Assume X is a mixture space containing a separated pair of alternatives
and D is an indifference-rich and polygon-rich domain. Clearly, if there exists a non-empty,
compact, and convex set Φ ⊂ (RI+)2 × R such that (2) holds then F is interval-neutral. Con-
versely, assume F is interval-neutral. Note that for a given non-empty, compact, and convex set
Φ ⊂ (RI+)2 ×R, (2) holds if and only if, for all (Ui)i∈I ∈ D and all x ∈ X,

maxF
(
(Ui)i∈I

)
(x) = max

(α,β,γ )∈Φ

(∑
i∈I

αi maxUi(x) −
∑
i∈I

βi minUi(x) + γ

)
,

minF
(
(Ui)i∈I

)
(x) = min

(α,β,γ )∈Φ

(∑
i∈I

αi minUi(x) −
∑
i∈I

βi maxUi(x) + γ

)
. (7)

Let K denote the set of all non-empty and compact real intervals. Since D is polygon-regular,
for all (Ki)i∈I ∈ K I , there exist x ∈ X and (Ui)i∈I ∈ D such that Ui(x) = Ki for all i ∈ I .
Hence {(Ui(x))i∈I : (Ui)i∈I ∈ D, x ∈ X} = K I so, by interval-neutrality, there exists a unique
function G : K I → K such that, for all (Ui)i∈I ∈ D and all x ∈ X,

F
(
(Ui)i∈I

)
(x) = G

((
Ui(x)

)
i∈I

)
.

Let T = {(r, s) ∈ (RI )2: ∀i ∈ I, ri + si � 0}, and define the functions G,G : (RI )2 → R ∪
{−∞,+∞} by, for all (r, s) ∈ (RI )2,

G(r, s) =
{

maxG(([−si , ri])i∈I ) if (r, s) ∈ T ,

+∞ otherwise,

G(r, s) =
{−minG(([−ri , si])i∈I ) if (r, s) ∈ T ,

+∞ otherwise.

Clearly, dom(G) = dom(G) = T .6 Moreover, G(r, s) > −∞ and G(r, s) > −∞ for all (r, s) ∈
(RI )2, so G and G are proper. Also note that, for all (r, s) ∈ T ,

G(r, s) + G(s, r) = maxG
(([−si, ri]

)
i∈I

) − minG
(([−si , ri]

)
i∈I

)
� 0.

Finally, for all (Ui)i∈I ∈ D and all x ∈ X, we have

maxF
(
(Ui)i∈I

)
(x) = maxG

((
Ui(x)

)
i∈I

) = G
((

maxUi(x),−minUi(x)
)
i∈I

)
,

minF
(
(Ui)i∈I

)
(x) = minG

((
Ui(x)

)
i∈I

) = −G
((−minUi(x),maxUi(x)

)
i∈I

)
,

so for a given non-empty, compact, and convex set Φ ⊂ (RI+)2 ×R, (7) holds if and only if, for
all (r, s) ∈ T ,

G(r, s) = max
(α,β,γ )∈Φ

(αr + βs + γ ), G(r, s) = max
(α,β,γ )∈Φ

(αr + βs − γ ). (8)

Lemma 3. G and G are convex.

Proof. We only state the proof for G, the argument for G is similar. Let (r, s), (r ′, s′) ∈ T .
Since D is polygon-rich, there exist x, y ∈ X, x �= y, and (Ui)i∈I ∈ D such that Ui |{x,y} =
conv({wi,w

′
i}) for all i ∈ I , where wi,w

′
i ∈ R{x,y} are defined by

wi(x) = −si, w′
i (x) = ri ,

wi(y) = −s′
i , w′

i (y) = r ′
i .

6 Given a function f , dom(f ) denotes the effective domain of f .
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Note that for all i ∈ I and all λ ∈ [0,1], we have Ui(xλy) = [−λsi − (1 − λ)s′
i , λri + (1 − λ)r ′

i ].
Hence, for all λ ∈ [0,1],

G
(
λ(r, s) + (1 − λ)

(
r ′, s′)) = G

(
λr + (1 − λ)r ′, λs + (1 − λ)s′)

= maxG
(([−λsi − (1 − λ)s′

i , λri + (1 − λ)r ′
i

])
i∈I

)
= maxG

((
Ui(xλy)

)
i∈I

)
= maxF

(
(Ui)i∈I

)
(xλy)

� λmaxF
(
(Ui)i∈I

)
(x) + (1 − λ)maxF

(
(Ui)i∈I

)
(y)

= λmaxG
((

Ui(x)
)
i∈I

) + (1 − λ)maxG
((

Ui(y)
)
i∈I

)
= λmaxG

(([−si , ri]
)
i∈I

) + (1 − λ)maxG
(([−s′

i , r
′
i

])
i∈I

)
= λG(r, s) + (1 − λ)G

(
r ′, s′),

where the inequality follows from Lemma 2(a). �
Lemma 4. G and G are non-decreasing.

Proof. We only state the proof for G, the argument for G is similar. It is sufficient to prove that
for all i ∈ I , G is non-decreasing in (ri , si). So fix some i ∈ I and let (r, s), (r ′, s′) ∈ T such that
(r ′

i , s
′
i ) � (ri , si) and (r ′

j , s
′
j ) = (rj , sj ) for all j ∈ I \{i}. We proceed in two steps. First, we prove

that G(r ′, s′) � G(r, s) whenever ri + si > 0. To this end, we assume without loss of generality
that r ′

i + s′
i � 2(ri + si). Since D is polygon-rich, there exist x, y ∈ X, x �= y, and (Uj )j∈I ∈ D

such that Uj |{x,y} = conv({wj ,w
′
j ,w

′′
j ,w′′′

j }) for all j ∈ I , where wj ,w
′
j ,w

′′
j ,w′′′

j ∈ R{x,y} are
defined by

wj(x) = −s′
j , w′

j (x) = s′
j − 2sj , w′′

j (x) = r ′
j , w′′′

j (x) = 2rj − r ′
j ,

wj (y) = s′
j − 2sj , w′

j (y) = −s′
j , w′′

j (y) = 2rj − r ′
j , w′′′

j (y) = r ′
j .

Note that for all j ∈ I , we have Uj (x) = Uj (y) = [−s′
j , r

′
j ] and Uj (x

1
2y) = [−sj , rj ]. Hence,

G(r, s) = maxG
(([−sj , rj ]

)
j∈I

)
= maxG

((
Uj

(
x

1

2
y

))
j∈I

)
= maxF

(
(Uj )j∈I

)(
x

1

2
y

)
� 1

2
maxF

(
(Uj )j∈I

)
(x) + 1

2
maxF

(
(Uj )j∈I

)
(y)

= 1

2
maxG

((
Uj(x)

)
j∈I

) + 1

2
maxG

((
Uj (y)

)
j∈I

)
= 1

2
maxG

(([−s′
j , r

′
j

])
j∈I

) + 1

2
maxG

(([−s′
j , r

′
j

])
j∈I

)
= G

(
r ′, s′),

where the inequality follows from Lemma 2(a).
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Second, we prove that G(r ′, s′) � G(r, s) whenever ri + si = 0. To this end, suppose
G(r ′, s′) < G(r, s). Clearly, it must then be that r ′

i + s′
i > 0. Since D is polygon-rich, there

exist x, y ∈ X, x �= y, and (Uj )j∈I ∈ D such that Uj |{x,y} = conv({wj ,w
′
j }) for all j ∈ I , where

wj ,w
′
j ∈R{x,y} are defined by

wj(x) = −sj , w′
j (x) = rj ,

wj (y) = −s′
j , w′

j (y) = r ′
j .

Note that for all j ∈ I and all λ ∈ [0,1], we have Uj (xλy) = [−λsj − (1−λ)s′
j , λrj + (1−λ)r ′

j ].
Hence,

maxF
(
(Uj )j∈I

)
(x) = maxG

((
Uj(x)

)
j∈I

)
= maxG

(([−sj , rj ]
)
j∈I

)
= G(r, s)

> G
(
r ′, s′)

= maxG
(([−s′

j , r
′
j

])
j∈I

)
= maxG

((
Uj(y)

)
j∈I

)
= maxF

(
(Uj )j∈I

)
(y),

so there exists λ ∈ (0,1) such that λmaxF((Uj )j∈I )(x) + (1 − λ)minF((Ui)i∈I )(y) >

maxF((Uj )j∈I )(y). Moreover,

maxF
(
(Uj )j∈I

)
(xλy) = maxG

((
Uj (xλy)

)
j∈I

)
= maxG

(([−λsj − (1 − λ)s′
j , λrj + (1 − λ)r ′

j

])
j∈I

)
= G

(
λ(r, s) + (1 − λ)

(
r ′, s′))

� G
(
r ′, s′)

= maxF
(
(Uj )j∈I

)
(y),

where the inequality follows from the first step. It follows that λmaxF((Uj )j∈I )(x) +
(1 − λ)minF((Uj )j∈I )(y) > maxF((Uj )j∈I )(xλy), a contradiction by Lemma 2(b). �
Lemma 5. G and G are continuous.

Proof. We only state the proof for G, the argument for G is similar. By Lemma 3, G is upper
semi-continuous since T is a polyhedral cone (Rockafellar [20, Theorem 10.2, Theorem 20.5]),
so it is sufficient to prove that G is lower semi-continuous, i.e. that clG = G.7 By definition,
clG � G. Conversely, let (r, s) ∈ (RI )2. If (r, s) /∈ T then clG(r, s) = G(r, s) = +∞ since T is
closed. If (r, s) ∈ T then let (r ′, s′) ∈ (RI )2 such that r ′

i > ri and s′
i > si for all i ∈ I . Then (r ′, s′)

belongs to the relative interior of T and, hence, clG(r, s) = limλ→0+ G((1 − λ)(r, s) + λ(r ′, s′))
(Rockafellar [20, Theorem 7.5]). By Lemma 4, we have G(r, s) � G((1 − λ)(r, s) + λ(r ′, s′))
for all λ ∈ [0,1] and, hence, G(r, s) � clG(r, s). �
Lemma 6. For all (r, s) ∈ T and all μ > 1, G(μ(r, s)) + G(μ(r, s)) � μ(G(r, s) + G(r, s)).

7 Given a function f , clf denotes the closure of f .
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Proof. Let (r, s) ∈ T and μ > 1. Since D is polygon-rich, there exist x, y ∈ X, x �= y, and
(Ui)i∈I ∈ D such that Ui |{x,y} = conv({wi,w

′
i}) for all i ∈ I , where wi,w

′
i ∈ R{x,y} are defined

by

wi(x) = −μsi, w′
i (x) = μri,

wi(y) = μsi, w′
i (y) = −μri.

Note that for all i ∈ I , we have Ui(x) = [−μsi,μri], Ui(y) = [−μri,μsi], Ui(x
1
2y) = {0},

Ui(x
1
μ
(x 1

2y)) = [−si , ri], and Ui(y
1
μ
(x 1

2y)) = [−ri , si]. Hence,

μ + 1

2μ
G

(
μ(r, s)

) − μ − 1

2μ
G

(
μ(r, s)

) = μ + 1

2μ
maxF

(
(Ui)i∈I

)
(x)

+ μ − 1

2μ
minF

(
(Ui)i∈I

)
(y)

� maxF
(
(Ui)i∈I

)(
x

μ + 1

2μ
y

)
= maxF

(
(Ui)i∈I

)(
x

1

μ

(
x

1

2
y

))
= G(r, s),

where the inequality follows from Lemma 2(b). Similarly,

μ − 1

2μ
G

(
μ(r, s)

) − μ + 1

2μ
G

(
μ(r, s)

) = μ − 1

2μ
maxF

(
(Ui)i∈I

)
(x)

+ μ + 1

2μ
minF

(
(Ui)i∈I

)
(y)

� minF
(
(Ui)i∈I

)(
x

μ − 1

2μ
y

)
= minF

(
(Ui)i∈I

)(
y

1

μ

(
x

1

2
y

))
= −G(r, s),

where the inequality follows again from Lemma 2(b). Hence,

G(r, s) + G(r, s) � μ + 1

2μ
G

(
μ(r, s)

) − μ − 1

2μ
G

(
μ(r, s)

) − μ − 1

2μ
G

(
μ(r, s)

)
+ μ + 1

2μ
G

(
μ(r, s)

)
= 1

μ

(
G

(
μ(r, s)

) + G
(
μ(r, s)

))
,

so G(μ(r, s)) + G(μ(r, s)) � μ(G(r, s) + G(r, s)). �
Let G0+,G0+ : (RI )2 → R ∪ {−∞,+∞} denote the recession functions of G and G, re-

spectively, i.e. (Rockafellar [20, Theorem 8.5]) for all (r, s) ∈ (RI )2,

G0+(r, s) = lim
G(μ(r, s))

, G0+(r, s) = lim
G(μ(r, s))

.

μ→+∞ μ μ→+∞ μ
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G0+ and G0+ are positively homogeneous, proper convex functions by definition, and are closed
since G and G are closed. Also note that G0+ and G0+ are non-decreasing by Lemma 4.

Lemma 7. dom(G0+) = T and G0+ = G0+.

Proof. Let (r, s) ∈ (RI )2. If (r, s) /∈ T then, clearly, G0+(r, s) = G0+(r, s) = +∞. Hence it

is sufficient to show that if (r, s) ∈ T then limμ→+∞ G(μ(r,s))
μ

= limμ→+∞ G(μ(r,s))

μ
< +∞.

So let (r, s) ∈ T . Since G(μ(r,s))
μ

and G(μ(r,s))

μ
are non-decreasing functions of μ (Rockafellar

[20, Theorem 23.1]), and since the sum of these two functions is bounded above by Lemma 6,

we have limμ→+∞ G(μ(r,s))
μ

< +∞ and limμ→+∞ G(μ(r,s))

μ
< +∞. Moreover, for all μ > 1,

defining x, y, Ui , wi , and w′
i as in the proof of Lemma 6 yields

1

2
G

(
μ(r, s)

) − 1

2
G

(
μ(r, s)

) = 1

2
maxF

(
(Ui)i∈I

)
(x) + 1

2
minF

(
(Ui)i∈I

)
(y)

∈
[

minF
(
(Ui)i∈I

)(
x

1

2
y

)
,maxF

(
(Ui)i∈I

)(
x

1

2
y

)]
= [−G(0,0),G(0,0)

]
,

by Lemma 2(b), so − 2
μ
G(0,0) � 1

μ
G(μ(r, s)) − 1

μ
G(μ(r, s)) � 2

μ
G(0,0) and, hence,

limμ→+∞ G(μ(r,s))
μ

= limμ→+∞ G(μ(r,s))

μ
. �

Lemma 8. G, G, G0+, and G0+ are Lipschitzian.

Proof. We only state the proof for G and G0+, the argument for G and G0+ is similar. First,
for all (r, s) ∈ (RI )2, let T (r, s) = ((−min{−ri , si},max{−ri , si})i∈I ). Note that T (r, s) ∈ T

for all (r, s) ∈ (RI )2 and T (r, s) = (r, s) for all (r, s) ∈ T . Define the function g : (RI )2 →
R ∪ {−∞,+∞} by, for all (r, s) ∈ (RI )2, g(r, s) = G(T (r, s)). Clearly, dom(g) = (RI )2 and,
for all (r, s) ∈ T , g(r, s) = G(r, s). Moreover, g is convex since, for all (r, s), (r ′, s′) ∈ (RI )2 and
all λ ∈ [0,1],

g
(
λ(r, s) + (1 − λ)

(
r ′, s′))

= G

((−min
{
λ(−ri) + (1 − λ)

(−r ′
i

)
, λsi + (1 − λ)s′

i

}
,

max
{
λ(−ri) + (1 − λ)

(−r ′
i

)
, λsi + (1 − λ)s′

i

})
i∈I

)

� G

((−(
λmin{−ri, si} + (1 − λ)min

{−r ′
i , s

′
i

})
,

λmax{−ri , si} + (1 − λ)max
{−r ′

i , s
′
i

} )
i∈I

)

= G

(
λ
(−min{−ri , si},max{−ri , si}

)
i∈I

+ (1 − λ)
(−min

{−r ′
i , s

′
i

}
,max

{−r ′
i , s

′
i

})
i∈I

)
� λG

((−min{−ri, si},max{−ri, si}
)
i∈I

)
+ (1 − λ)G

((−min
{−r ′

i , s
′
i

}
,max

{−r ′
i , s

′
i

})
i∈I

)
= λg(r, s) + (1 − λ)g

(
r ′, s′),



E. Danan et al. / Journal of Economic Theory 148 (2013) 663–688 681
where the first inequality follows from Lemma 4 and the second one from Lemma 3. Now,
suppose G is not Lipschitzian. Then g is not Lipschitzian either. Hence, since g is finite and con-
vex, there must exist (r, s) ∈ (RI )2 such that g0+(r, s) = +∞ (Rockafellar [20, Theorem 10.5]),
i.e. G0+(T (r, s)) = +∞, a contradiction by Lemma 7. Finally, note that for all (r, s) ∈ (RI )2,
g0+(r, s) = G0+(T (r, s)) < +∞ by Lemma 7. Hence g0+ is Lipschitzian since it is its own
recession function (Rockafellar [20, Theorem 10.5]), so G0+ is Lipschitzian. �
Lemma 9. For all (r, s), (r ′, s′) ∈ (RI )2, if G0

+′
((r, s), (r ′, s′)) = −G0

+′
((r, s),−(r ′, s′)) then8

G0
+′(

(r, s),
(
r ′, s′)) = lim

μ→+∞G′(μ(r, s),
(
r ′, s′))

= lim
μ→+∞−G′(μ(r, s),−(

r ′, s′))
= lim

μ→+∞G′(μ(r, s),
(
r ′, s′))

= lim
μ→+∞−G′(μ(r, s),−(

r ′, s′)).
Proof. We only state the proof for G, the argument for G is similar, given Lemma 7. Let
(r, s), (r ′, s′) ∈ (RI )2. If (r, s) /∈ T then the lemma is trivially true (all directional derivatives
are equal to +∞), so assume (r, s) ∈ T . Then, by definition of G0

+′
, for all ε > 0, there exists

δ0 > 0 such that

G0+((r, s) + δ0(r
′, s′)) − G0+(r, s)

δ0
� G0

+′(
(r, s),

(
r ′, s′)) + ε

and, hence,

lim
μ→+∞

G(μ(r, s) + μδ0(r
′, s′)) − G(μ(r, s))

μδ0
� G0

+′(
(r, s),

(
r ′, s′)) + ε.

Hence, for all ε > 0, there exist δ0 > 0 and μ0 > 1 such that, for all μ � μ0,

G(μ(r, s) + μδ0(r
′, s′)) − G(μ(r, s))

μδ0
� G0

+′(
(r, s),

(
r ′, s′)) + ε.

Moreover, since μ(r, s) + δ0(r
′, s′) = (1 − 1

μ
)(μ(r, s)) + 1

μ
(μ(rs) + μδ0(r

′, s′)), we have

G
(
μ(r, s) + δ0

(
r ′, s′)) �

(
1 − 1

μ

)
G

(
μ(r, s)

) + 1

μ
G

(
μ(rs) + μδ0

(
r ′, s′))

by Lemma 3 and, hence,

G(μ(r, s) + δ0(r
′, s′)) − G(μ(r, s))

δ0
� G(μ(r, s) + μδ0(r

′, s′)) − G(μ(r, s))

μδ0
.

Hence, for all ε > 0, there exist δ0 > 0 and μ0 > 1 such that, for all μ � μ0,

G(μ(r, s) + δ0(r
′, s′)) − G(μ(r, s))

δ0
� G0

+′(
(r, s),

(
r ′, s′)) + ε

8 Given a function f and a point x ∈ dom(f ), f ′(x, y) denotes the (one-sided) directional derivative of f at x in

direction y, i.e. f ′(x, y) = limδ→0+
f (x+δy)−f (x) if x ∈ dom(f ) and f ′(x, y) = +∞ otherwise.
δ
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and, hence, for all δ ∈ (0, δ0),

G(μ(r, s) + δ(r ′, s′)) − G(μ(r, s))

δ
� G0

+′(
(r, s),

(
r ′, s′)) + ε

by Lemma 3 (Rockafellar [20, Theorem 23.1]). Hence, by definition of G′, for all ε > 0, there
exists μ0 > 1 such that G′(μ(r, s), (r ′, s′)) � G0

+′
((r, s), (r ′, s′)) + ε for all μ � μ0.

Now, assume G0
+′

((r, s), (r ′, s′)) = −G0
+′

((r, s),−(r ′, s′)). Then, by the preceding para-
graph, for all ε > 0, there exists μ0 > 1 such that, for all μ � μ0,

G′(μ(r, s),
(
r ′, s′)) − ε � G0

+′(
(r, s),

(
r ′, s′))

= −G0
+′(

(r, s),−(
r ′, s′))

� −G′(μ(r, s),−(
r ′, s′)) + ε

� G
(
μ(r, s),

(
r ′, s′)) + ε

(where the last inequality follows from Rockafellar [20, Theorem 23.1]), so we obtain
limμ→+∞ G′(μ(r, s), (r ′, s′)) = limμ→+∞ −G′(μ(r, s),−(r ′, s′)) = G0

+′
((r, s), (r ′, s′)) by

passing to the limit as ε → 0+. �
Let G∗,G∗ : (RI )2 → R ∪ {−∞,+∞} denote the conjugate functions of G and G, respec-

tively, i.e. for all (α,β) ∈ (RI )2,

G∗(α,β) = sup
(r,s)∈T

(
αr + βs − G(r, s)

)
, G∗(α,β) = sup

(r,s)∈T

(
αr + βs − G(r, s)

)
.

Since G and G are closed proper convex functions, so are G∗ and G∗ (Rockafellar [20, The-
orem 12.2]). Moreover, G∗ and G∗ are clearly bounded below since, for all (α,β) ∈ (RI )2,
G∗(α,β) � −G(0,0) and G∗(α,β) � −G(0,0).

Let C = {(−η,−η): η ∈ RI+} ⊂ (RI−)2. Clearly, C is a non-empty, closed, and convex cone
containing no line and, moreover, we have C = T ◦.9 Let L ⊂ (RI )2 be the set of points where
G0+ is differentiable. Clearly, cl(L) = T (Rockafellar [20, Theorem 25.5]), so L is non-empty.10

Let E = {∇G0+(r, s): (r, s) ∈ L} and M = cl(conv(E)). By Lemmas 4 and 8, E is a non-
empty and bounded subset of (RI+)2 and, hence, M is a non-empty, compact, and convex subset
of (RI+)2.

Lemma 10. For all (α,β) ∈ M + C, G∗(α,β) + G∗(α,β) � 0.

Proof. We claim that G∗(α,β) + G∗(α,β) � 0 for all (α,β) ∈ E. If this is true then we
have G∗(α,β) + G∗(α,β) � 0 for all (α,β) ∈ M since G∗ + G∗ is closed (Rockafellar
[20, Theorem 9.3]). Moreover, for all η ∈ RI+, we have G∗(α − η,β − η) = sup(r,s)∈T (αr +
βs − η(r + s) − G(r, s)) � G∗(α,β) and G∗(α − η,β − η) = sup(r,s)∈T (αr + βs − η(r + s) −
G(r, s)) � G∗(α,β) since r + s � 0 for all (r, s) ∈ T . Hence G∗(α,β) + G∗(α,β) � 0 for all
(α,β) ∈ M + C.

9 Given a cone S, S◦ denotes the polar cone of S, i.e. S◦ = {y: ∀s ∈ S, xy � 0}.
10 Given a set S, cl(S) denotes the closure of S.
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To prove the claim, let (α,β) ∈ E. Since G∗ and G∗ are closed, it is sufficient to
find two sequences (αμ,βμ)μ�1 and (αμ,βμ)μ�1 in (RI )2 such that limμ→+∞(αμ,βμ) =
limμ→+∞(αμ,βμ) = (α,β) and limμ→+∞ G∗(αμ,βμ) + limμ→+∞ G∗(αμ,βμ) � 0. More-

over, since G∗ and G∗ are bounded below, a sufficient condition for limμ→+∞ G∗(αμ,βμ) +
limμ→+∞ G∗(αμ,βμ) � 0 is that G∗(αμ,βμ) + G∗(αμ,βμ) � 0 for all μ � 1.

In order to construct these sequences, note that since (α,β) ∈ E, we have (α,β) = ∇G0+(r, s)

for some (r, s) ∈ L by definition. Clearly, (r, s) must then belong to the interior of T (Rockafel-
lar [20, Corollary 25.1.1]). Hence, for all μ � 1, μ(r, s) also belongs to the interior of T , so
∂G(μ(r, s)) is non-empty and compact (Rockafellar [20, Theorem 23.4]).11 It follows that there
exists (αμ,βμ) ∈ ∂G(μ(r, s)) such that G′(μ(r, s),−(r, s)) = −αμr − βμs since G′(μ(r, s), ·)
is the support function of ∂G(μ(r, s)) (Rockafellar [20, Theorem 23.2, Theorem 23.4]). Hence
we have G(μ(r, s)) + G∗(αμ,βμ) = μ(αμr + βμs) (Rockafellar [20, Theorem 23.5]) and,
hence,

G∗(αμ,βμ) = −G
(
μ(r, s)

) − μG′(μ(r, s),−(r, s)
)

= −G
(
μ(r, s)

) − μ lim
ε↓0

G((μ − ε)(r, s)) − G(μ(r, s))

ε

= lim
ε↓0

(μ − ε)G(μ(r, s)) − μG((μ − ε)(r, s))

ε
.

Similarly, there exists (αμ,βμ) ∈ ∂G(μ(r, s)) such that

G∗(αμ,βμ) = lim
ε↓0

(μ − ε)G(μ(r, s)) − μG((μ − ε)(r, s))

ε
.

Hence,

G∗(αμ,βμ) + G∗(αμ,βμ)

= lim
ε↓0

(μ − ε)(G(μ(r, s)) + G(μ(r, s))) − μ(G((μ − ε)(r, s)) + G((μ − ε)(r, s)))

ε

� 0

by Lemma 6. Moreover, G0
+′

((r, s), ·) is linear since (r, s) ∈ L (Rockafellar [20, Theorem 25.2])
and, hence, (G′(μ(r, s), ·))μ�1 and (G′(μ(r, s), ·))μ�1 converge pointwise to G0

+′
((r, s), ·) as

μ → +∞ by Lemma 9. Since G0
+′

((r, s), ·) is the support function of ∂G0+(r, s) = {(α,β)}, it
follows that limμ→+∞(αμ,βμ) = limμ→+∞(αμ,βμ) = (α,β) (Schneider [21, Theorem 1.8.11,
Theorem 1.8.12]). �
Lemma 11. dom(G∗) = dom(G∗) = M + C.

Proof. Since G∗ and G∗ are proper, we have M + C ⊆ dom(G∗) ∩ dom(G∗) by Lemma 10.
Hence it is sufficient to prove that cl(dom(G∗)) = cl(dom(G∗)) = M + C. To this end, note that
by definition of G∗, G0+, G∗, and G0+, we have

11 Given a function f and a point x, ∂f (x) denotes the subdifferential of f at x, i.e. ∂f (x) = {x∗: ∀y, f (y) � f (x) +
(y − x)x∗}.
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cl
(
dom

(
G∗)) = {

(α,β) ∈ (
RI

)2: ∀(r, s) ∈ (
RI

)2
, αr + βs � G0+(r, s)

}
,

cl
(
dom

(
G∗)) = {

(α,β) ∈ (
RI

)2: ∀(r, s) ∈ (
RI

)2
, αr + βs � G0+(r, s)

}
(Rockafellar [20, Corollary 13.2.1, Theorem 13.3]), so cl(dom(G∗)) =, cl(dom(G∗)) by Lem-
ma 7. Moreover, since dom(G0+) = T , we have 0+ cl(dom(G∗)) = {(α,β) ∈ (RI )2: ∀(r, s) ∈ T ,

αr + βs � 0} = T ◦ = C.12 Hence cl(dom(G∗)) contains no line, so

cl
(
dom

(
G∗)) = cl

(
conv

(
exp

(
cl

(
dom

(
G∗)))) + C

)
(Rockafellar [20, Theorem 18.7]).13 Moreover, exp(cl(dom(G∗))) = E (Rockafellar [20, Corol-
lary 25.1.3]) and, hence, cl(dom(G∗)) = M + C since E is bounded (Rockafellar [20, Corol-
lary 9.1.1]). �

Let C′ = C ×R+ ⊂ (RI+)2 ×R. Clearly, C′ is a non-empty, closed, and convex cone contain-
ing no line. Let L,L ⊂ (RI )2 be the sets of points where G and G are differentiable, respectively.
Clearly, cl(L) = cl(L) = T (Rockafellar [20, Theorem 25.5]), so L and L are non-empty. Let
E = {∇G(r, s): (r, s) ∈ L} and E = {∇G(r, s): (r, s) ∈ L}. By Lemmas 4 and 8, E and E are
non-empty and bounded subsets of (RI+)2. Moreover, we have E ⊆ dom(G∗) and E ⊆ dom(G∗)
(Rockafellar [20, Theorem 23.5]) and, hence, the sets E′ = {(α,β,G∗(α,β)): (α,β) ∈ E} and
E′ = {(α,β,G∗(α,β)): (α,β) ∈ E} are non-empty and bounded subsets of (RI+)2 × R since
G∗ and G∗ are bounded below and above by Lemma 10. Hence the sets M ′ = cl(conv(E′)) and
M ′ = cl(conv(E′)) are non-empty, compact, and convex subsets of (RI+)2 ×R.

Lemma 12. For all non-empty, compact, and convex set Φ ⊂ (RI+)2 ×R, M ′ ⊆ Φ ⊆ M ′ + C′ if
and only if, for all (r, s) ∈ T , G(r, s) = max(α,β,γ )∈Φ(αr +βs −γ ). Similarly, for all non-empty,

compact, and convex set Φ ⊂ (RI+)2 × R, M ′ ⊆ Φ ⊆ M ′ + C′ if and only if, for all (r, s) ∈ T ,
G(r, s) = max(α,β,γ )∈Φ(αr + βs − γ ).

Proof. We only state the proof for G, the argument for G is similar. Since G is closed, it is the
conjugate function of G∗ (Rockafellar [20, Theorem 12.2]), i.e. for all (r, s) ∈ T ,14

G(r, s) = sup
(α,β)∈dom(G∗)

(
αr + βs − G∗(α,β)

) = sup
(α,β,γ )∈epi(G∗)

(αr + βs − γ ).

We now prove that epi(G∗) = M ′ + C′. First, we clearly have 0+ epi(G∗) ⊆ 0+ dom(G∗) ×R=
C × R. Moreover, since G∗ is bounded below, we have in fact 0+ epi(G∗) ⊆ C × R+ = C′.
Conversely, since G∗(α − η,β − η) � G∗(α,β) for all (α,β) ∈ dom(G∗) and all η ∈ RI+ (see
the proof of Lemma 10), we have C′ ⊆ 0+ epi(G∗). Hence 0+ epi(G∗) = C′ and, hence, epi(G∗)
contains no line, so we have epi(G∗) = cl(conv(exp(epi(G∗))) + C′) since G∗ is closed (Rock-
afellar [20, Theorem 18.7]). Moreover, exp(epi(G∗)) = E′ (Rockafellar [20, Corollary 25.1.2])
and, hence, epi(G∗) = M ′ + C′ since E′ is bounded (Rockafellar [20, Corollary 9.1.1]).

Thus, for all (r, s) ∈ T , we have G(r, s) = sup(α,β,γ )∈M ′+C′(αr + βs − γ ). Hence, since G is

finite on T by definition and since M ′ is compact, it must be that G(r, s) = sup(α,β,γ )∈M ′(αr +
βs − γ ) = max(α,β,γ )∈M ′(αr + βs − γ ). It follows that G(r, s) = max(α,β,γ )∈Φ(αr + βs − γ )

12 Given a set S, 0+S denotes the recession cone of S, i.e. 0+S = {y: ∀x ∈ S, ∀μ > 0, x + μy ∈ S}.
13 Given a set S, exp(S) denotes the set of exposed points of S.
14 Given a real-valued function f , epi(f ) denotes the epigraph of f , i.e. epi(f ) = {(x, γ ): γ � f (x)}.
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for all non-empty, compact, and convex set Φ ⊂ (RI+)2 × R such that M ′ ⊆ Φ ⊆ M ′ + C′. For
the converse, first assume that Φ � M ′ + C′, i.e. that there exists (α0, β0, γ0) ∈ Φ \ (M ′ + C′).
Then, since M ′ + C′ is closed and convex and contains no line, there exists (r, s, t) ∈ (RI )2 ×R
with t �= 0 such that α0r + β0s + γ0t > αr + βs + γ t for all (α,β, γ ) ∈ M ′ + C′. Clearly, it
must then be that (r, s, t) ∈ C′ ◦ = T × R−. Hence, if we let (r ′, s′) = ( r

|t | ,
s
|t | ) ∈ T , we have

α0r
′ + β0s

′ − γ0 > αr ′ + βs′ − γ for all (α,β, γ ) ∈ M ′ + C′, so sup(α,β,γ )∈Φ(αr ′ + βs′ − γ ) >

sup(α,β,γ )∈M ′+C′(αr ′ + βs′ − γ ) = G(r ′, s′). Now, assume that Φ ⊆ M ′ + C′ but M ′ � Φ ,

i.e. that there exists (α0, β0, γ0) ∈ M ′ \ Φ . Then there exists (α0, β0, γ0) ∈ E′ \ Φ (Rock-
afellar [20, Theorem 18.6]) and, hence, there exists (r, s, t) ∈ (RI )2 × R with t �= 0 such
that α0r + β0s + γ0t > αr + βs + γ t for all (α,β, γ ) ∈ Φ + C′ ⊆ M ′ + C′ (Rockafellar
[20, Corollary 25.1.2]). Clearly, it must then be that (r, s, t) ∈ C′ ◦ = T × R−. Hence, if we let
(r ′, s′) = ( r

|t | ,
s
|t | ) ∈ T , we have α0r

′ + β0s
′ − γ0 > αr ′ + βs′ − γ for all (α,β, γ ) ∈ Φ , so

sup(α,β,γ )∈Φ(αr ′ + βs′ − γ ) < sup(α,β,γ )∈M ′+C′(αr ′ + βs′ − γ ) = G(r ′, s′). �
Let M ′′ = {(α,β,−γ ): (α,β, γ ) ∈ M ′} and C′′ = C ×R−. By Lemma 12, for all non-empty,

compact, and convex set Φ ⊂ (RI+)2 ×R, M ′′ ⊆ Φ ⊆ M ′′ + C′′ if and only if, for all (r, s) ∈ T ,
G(r, s) = max(α,β,γ )∈Φ(αr + βs + γ ). Hence for all non-empty, compact, and convex set Φ ⊂
(RI+)2 ×R, (8) holds if and only if conv(M ′ ∪ M ′′) ⊆ Φ ⊆ (M ′ + C′) ∩ (M ′′ + C′′).

Lemma 13. (M ′ + C′) ∩ (M ′′ + C′′) = conv(M ′ ∪ M ′′) + (C × {0}).

Proof. Since 0 ∈ C′ ∩ C′′, we have M ′ ⊆ M ′ + C′ and M ′′ ⊆ M ′′ + C′′. Moreover, M ′ ⊆
M ′′ + C′′ and M ′′ ⊆ M ′ + C′ by Lemma 10. Hence conv(M ′ ∪ M ′′) ⊆ (M ′ + C′) ∩ (M ′′ + C′′)
since the set on the right hand side is convex. Hence conv(M ′ ∪ M ′′) + (C × {0}) ⊆ (M ′ + C′) ∩
(M ′′ +C′′) since (C ×{0}) = C′ ∩C′′. Conversely, let ν ∈ (M ′ +C′)∩ (M ′′ +C′′). By definition,
there exist (α,β, γ ) ∈ M ′, (α,β, γ ) ∈ M ′′, η,η ∈RI+, and τ , τ ∈R+ such that

ν = (α,β, γ ) + (−η,−η, τ ) = (α,β, γ ) + (−η,−η,−τ).

Hence, setting τ
τ+τ

= τ

τ+τ
= 1

2 in case τ = τ = 0, we have

ν = τ

τ + τ

(
(α,β, γ ) + (−η,−η, τ )

) + τ

τ + τ

(
(α,β, γ ) + (−η,−η,−τ)

)
=

(
τ

τ + τ
(α,β, γ ) + τ

τ + τ
(α,β, γ )

)
+

(
−

(
τ

τ + τ
η + τ

τ + τ
η

)
,−

(
τ

τ + τ
η + τ

τ + τ
η

)
,0

)
,

so ν ∈ conv(M ′ ∪ M ′′) + (C × {0}). �
Finally, let Φ = conv(M ′ ∪ M ′′). Then (8) holds, as well as the uniqueness result, by

Lemma 13. �
Proof of Theorem 2. Assume X is a mixture space containing a separated triple of alternatives
and D is an indifference-rich, polygon-rich, and calibration-rich domain. Clearly, if there exists
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a non-empty, compact, and convex set Φ ⊂ (RI+)2 ×R such that (4) holds then F satisfies Inde-
pendence of Irrelevant Alternatives and Pareto Indifference. Conversely, assume F satisfies these
two axioms. By Lemma 1 and Theorem 1, since D is indifference-rich and polygon-rich, there
then exists a unique non-empty, compact, and convex set Φ ⊂ (RI+)2 × R such that (2) and the
associated uniqueness result hold. Let F ′ denote the social welfare function defined by (4) with
the same domain D and the same set Φ of weight-constant vectors. Then F ′ satisfies Pareto In-
difference and Independence of Irrelevant Alternatives and, for all (Ui)i∈I ∈ D and all x ∈ X, we
have F((Ui)i∈I )(x) = F ′((Ui)i∈I )(x). In order to complete the proof of the theorem (including
the uniqueness part), it is sufficient to show that F = F ′.

Lemma 14. Let F and F ′ be two social welfare functions on D satisfying Pareto Indiffer-
ence and Independence of Irrelevant Alternatives. If F((Ui)i∈I )(x) = F ′((Ui)i∈I )(x) for all
(Ui)i∈I ∈ D and all x ∈ X then F((Ui)i∈I )|{x1,x2} = F ′((Ui)i∈I )|{x1,x2} for all (Ui)i∈I ∈ D and
all x1, x2 ∈ X.

Proof. Assume there exist (Ui)i∈I ∈ D and x1, x2 ∈ X such that F((Ui)i∈I )|{x1,x2} �=
F ′((Ui)i∈I )|{x1,x2}, so (without loss of generality), there exists u ∈ F((Ui)i∈I ) such that
u|{x1,x2} /∈ F ′((Ui)i∈I )|{x1,x2}. It is sufficient to find some (Ũi)i∈I ∈ D and x ∈ X such that
F((Ũi)i∈I )(x) �= F ′((Ũi)i∈I )(x).

Since F ′((Ui)i∈I )|{x1,x2} is a non-empty, compact, and convex subset of R2, there exists
t ∈ R2 such that t1 + t2 �= 0 and t1u(x1) + t2u(x2) > t1u

′(x1) + t2u
′(x2) for all u′ ∈ F ′((Ui)i∈I ).

Three cases may occur: either t > 0, or t < 0, or t1 > 0 and t2 < 0 (there is a fourth case,
t1 < 0 and t2 > 0, but it can be brought back to the third case by permuting x1 and x2). If
t > 0 then, letting x = x1

t1
t1+t2

x2 ∈ X, we have u(x) > u′(x) for all u′ ∈ F ′((Ui)i∈I ), so that

F((Ui)i∈I )(x) �= F ′((Ui)i∈I )(x). Similarly, if t < 0 then, letting again x = x1
t1

t1+t2
x2 ∈ X, we

have u(x) < u′(x) for all u′ ∈ F ′((Ui)i∈I ), so that F((Ui)i∈I )(x) �= F ′((Ui)i∈I )(x). Finally, if
t1 > 0 and t2 < 0 then two cases may occur: either t1 + t2 > 0 or t1 + t2 < 0.

If t1 + t2 > 0 then, since D is calibration-rich, there exist x ∈ X and (Ũi)i∈I ∈ D such
that, for all i ∈ I , Ũi |{x1,x2} = Ui |{x1,x2} and, for all ũi ∈ Ũi , ũi (x1) = ũi (x2(− t2

t1
)x). Hence

F((Ũi)i∈I )|{x1,x2} = F((Ui)i∈I )|{x1,x2} and F ′((Ũi)i∈I )|{x1,x2} = F ′((Ui)i∈I )|{x1,x2} since F and
F ′ satisfy Independence of Irrelevant Alternatives, so there exists ũ ∈ F((Ũi)i∈I ) such that
t1ũ(x1) + t2ũ(x2) > t1ũ

′(x1) + t2ũ
′(x2) for all ũ′ ∈ F ′((Ũi)i∈I ). Moreover, since F and F ′

satisfy Pareto Indifference, we have ũ(x1) = ũ(x2(− t2
t1

)x) = − t2
t1

ũ(x2) + t1+t2
t1

ũ(x) for all

ũ ∈ F((Ũi)i∈I ) and ũ′(x1) = ũ′(x2(− t2
t1

)x) = − t2
t1

ũ′(x2) + t1+t2
t1

ũ′(x) for all ũ′ ∈ F((Ũ ′
i )i∈I ).

Hence the above inequality is equivalent to ũ(x) > ũ′(x) for all ũ′ ∈ F ′((Ũi)i∈I ), so that
F((Ũi)i∈I )(x) �= F ′((Ũi)i∈I )(x).

Similarly, if t1 + t2 < 0 then, since D is calibration-rich, there exist x ∈ X and (Ũi)i∈I ∈ D
such that, for all i ∈ I , Ũi |{x1,x2} = Ui |{x1,x2} and, for all ũi ∈ Ũi , ũi (x2) = ũi (x1(− t1

t2
)x).

Hence F((Ũi)i∈I )|{x1,x2} = F((Ui)i∈I )|{x1,x2} and F ′((Ũi)i∈I )|{x1,x2} = F ′((Ui)i∈I )|{x1,x2} since
F and F ′ satisfy Independence of Irrelevant Alternatives, so there exists ũ ∈ F((Ũi)i∈I ) such
that t1ũ(x1) + t2ũ(x2) > t1ũ

′(x1) + t2ũ
′(x2) for all ũ′ ∈ F ′((Ũi)i∈I ). Moreover, since F and

F ′ satisfy Pareto Indifference, we have ũ(x2) = ũ(x1(− t1
t2

)x) = − t1
t2

ũ(x1) + t1+t2
t2

ũ(x) for all

ũ ∈ F((Ũi)i∈I ) and ũ′(x2) = ũ′(x1(− t2
t1

)x) = − t2
t1

ũ′(x1) + t1+t2
t2

ũ′(x) for all ũ′ ∈ F((Ũ ′
i )i∈I ).

Hence the above inequality is equivalent to ũ(x) < ũ′(x) for all ũ′ ∈ F ′((Ũi)i∈I ), so that
F((Ũi)i∈I )(x) �= F ′((Ũi)i∈I )(x). �
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Lemma 15. Let U,U ′ ∈ P , let n ∈ N , n > 2, and let y1, . . . , yn ∈ X. If U |{x,x′} = U ′|{x,x′} for
all x = y1λ1(. . . (yn−1λn−1yn)) ∈ X and x′ = y1λ

′
1(. . . (yn−1λ

′
n−1yn)) ∈ X, λ1, λ

′
1, . . . , λn−1,

λ′
n−1 ∈ [0,1], then U |{y1,...,yn} = U ′|{y1,...,yn}.

Proof. Assume U |{y1,...,yn} �= U ′|{y1,...,yn}, so (without loss of generality), there exists u ∈ U

such that u|{y1,...,yn} /∈ U ′|{y1,...,yn}. It suffices to find some x = y1λ1(. . . (yn−1λn−1yn)) ∈ X and
x′ = y1λ

′
1(. . . (yn−1λ

′
n−1yn)) ∈ X, λ1, λ

′
1, . . . , λn−1, λ

′
n−1 ∈ [0,1], such that u|{x,x′} /∈ U ′|{x,x′}.

Since U ′|{x,x′} is a non-empty, compact, and convex subset of Rn, there exists t ∈ Rn

such that t1, . . . , tn �= 0 and t1u(y1) + · · · + tnu(yn) > t1u
′(y1) + · · · + tnu

′(yn) for all
u′ ∈ U ′. Three cases may occur: either t > 0, or t < 0, or neither t > 0 nor t < 0. If t > 0
then, letting x = x′ = y1

t1
t1+···+tn

(. . . (yn−1
tn−1

tn−1+tn
yn)) ∈ X, we have u(x) = u(x′) > u′(x) =

u′(x′) for all u′ ∈ U ′, so that u|{x,x′} /∈ U ′|{x,x′}. Similarly, if t < 0 then, letting x = x′ =
y1

t1
t1+···+tn

(. . . (yn−1
tn−1

tn−1+tn
yn)) ∈ X, we have u(x) = u(x′) < u′(x) = u′(x′) for all u′ ∈ U ′,

so that u|{x,x′} /∈ U ′|{x,x′}. Finally, if neither t > 0 nor t < 0 then, permuting x1, . . . , xn if
necessary, we have t1, . . . , tk > 0 and tk+1, . . . , tn < 0 for some integer k, 1 < k < n. Since
t1u(y1) + · · · + tnu(yn) > t1u

′(y1) + · · · + tnu
′(yn) for all u′ ∈ U ′, there exists no u′ ∈ U ′ such

that t1u(y1) + · · · + tku(yk) = t1u
′(y1) + · · · + tku

′(yk) and tk+1u(yk+1) + · · · + tnu(yn) =
tk+1u

′(yk+1) + · · · + tnu
′(yn). Hence, letting x = y1

t1
t1+···+tk

(. . . (yk−1
tk−1

tk−1+tk
yk)) ∈ X and

x′ = yk+1
tk+1

tk+1+···+tn
(. . . (yn−1

tn−1
tn−1+tn

yn)) ∈ X, there exists no u′ ∈ U ′ such that u(x) = u′(x)

and u(x′) = u′(x′), so that u|{x,x′} /∈ U ′|{x,x′}. �
Lemma 16. Let U and U ′ be compact subsets of RX . If U |Y = U ′|Y for all finite subset Y of X

then U = U ′.

Proof. Assume U �= U ′, so (without loss of generality) there exists u ∈ U \ U ′. It is sufficient
to find some finite subset Y of X such that u|Y /∈ U ′|Y . By definition of the product topology,
since u ∈ RX \ U ′, which is an open set since U ′ is closed, there must exist a finite subset Y

of X and a collection (Oy)y∈Y of open subsets of R such that u ∈ O ⊆ RX \ U ′, where O =
(
∏

y∈Y Oy) ×RX\Y . By definition of O , it follows that u|Y /∈ U ′|Y . �
By Lemma 14, we have F((Ui)i∈I )|{x1,x2} = F ′((Ui)i∈I )|{x1,x2} for all (Ui)i∈I ∈ D and all

x1, x2 ∈ X. Hence, by Lemma 15, we have F((Ui)i∈I )|Y = F ′((Ui)i∈I )|Y for all (Ui)i∈I ∈ D
and all finite subset Y of X. Hence, by Lemma 16, we have F((Ui)i∈I ) = F ′((Ui)i∈I ) for all
(Ui)i∈I ∈ D , so F = F ′. �
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