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Abstract
Many popular internet platforms use so-called collaborative filtering systems to 
give personalized recommendations to their users, based on other users who pro-
vided similar ratings for some items. We propose a novel approach to such recom-
mendation systems by viewing a recommendation as a way to extend an agent’s 
expressed preferences, which are typically incomplete, through some aggregate of 
other agents’ expressed preferences. These extension and aggregation requirements 
are expressed by an Acceptance and a Pareto principle, respectively. We characterize 
the recommendation systems satisfying these two principles and contrast them with 
collaborative filtering systems, which typically violate the Pareto principle.

1  Introduction

The digitalization of our societies has enabled the personalization of advice to an 
extent never seen before. We now routinely receive recommendations or advertise-
ments not for the “best” possible product, but, rather, for the one that is “best fit” for 
us. Netflix, for instance, adjusts the movies and shows it suggests to each user based 
on her profile, what she has seen and how much she appreciated it. Different users 
receive different recommendations. As for many other internet platforms using so-
called “collaborative filtering” recommendation systems (Facebook, Twitter, Ama-
zon, Spotify, Last.fm, LinkedIn, ...), the recommendation for a given user will hinge 
upon other users that are “similar” to her in one way or another. How this notion of 
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similarity between users is modeled is crucial for the properties of the recommenda-
tion system.

The present paper approaches the issue of personalized, tailored recommendation 
from a normative perspective. Abstracting from the sophistication of actual recom-
mendation systems, we explore the implications of imposing basic axiomatic prin-
ciples in a simple formal framework. More specifically, we view a recommendation 
system as a way to “extend” an agent’s preferences to alternatives she has not yet 
rated, on the basis of some aggregate of other agents’ preferences. Preferences here 
encode the information available to the recommendation system—typically based 
on a user’s ratings or viewing behavior. Agents might actually be able to rank more 
alternatives than those they have rated, but such additional rankings are not mod-
eled as the recommendation system cannot take them into account. We implicitly 
interpret the available information as being truthful, thereby leaving aside strategic 
considerations. We allow all agents’ preferences to be incomplete, i.e., not rank all 
alternatives—and actually expect these rankings to be quite sparse in practice, given 
the vast amount of alternatives the above platforms cope with.

Formally, we consider a society of N + 1 agents, n = 0, 1,… ,N . Agent 0 is the 
one to whom we want to give a recommendation. Each agent is endowed with a 
possibly incomplete preference relation and we look for a recommendation in the 
form of another possibly incomplete preference relation. The actual list of alterna-
tives suggested to agent 0 can then be generated from this recommendation rank-
ing in various ways—e.g. suggesting the top-ranked alternatives among those avail-
able at a given time, or the top-ranked alternatives agent 0 has rated along with the 
top-ranked ones she has not rated. We do not model this stage and instead focus on 
desirable properties of the recommendation ranking. We consider two basic axioms:

Acceptance principle Whenever agent 0 has expressed a preference for an alterna-
tive over another, the former is recommended over the latter.
Pareto principle Whenever agents 1,… ,N have expressed a unanimous prefer-
ence for an alternative over another, the former is recommended over the latter.

The Acceptance principle captures the requirement that the recommendation 
to agent 0 must extend her preferences whereas the Pareto principle captures the 
requirement that it must aggregate the other agents’ preferences. As we first show 
through illustrative examples, this formalization of the recommendation problem 
makes it apparent that existing collaborative filtering systems violate the Pareto 
principle.

We then provide a simple and tractable characterization of the recommen-
dations satisfying these two principles. To this end, we assume all agents have 
expected utility preferences over lotteries. Such preferences, when complete, 
can be represented by a (cardinal) expected utility function (von Neumann and 
Morgenstern 1944) and, when incomplete, by a set of “possible” expected util-
ity functions in the sense that a lottery is preferred to another if and only if all 
functions in the set unanimously assign a higher expected utility to the former 
than the latter (Baucells and Shapley 2008; Dubra et al. 2004). When there is no 
such unanimity in favor of one of the two lotteries, they are unranked. While in 
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practice the alternatives at stake are usually sure prospects rather than lotteries, 
one can always take as primitive agents’ ratings over sure prospects and derive 
their preferences over lotteries “parsimoniously” under the expected utility axi-
oms (Dubra and Ok 2002).

Our main result establishes that the recommendations satisfying the Accept-
ance and Pareto principles are those that are based on possible utilities for agent 0 
that are also positive linear combinations of possible utilities for agents 1,… ,N . 
Roughly speaking, such recommendations hinge upon tailored “virtual guides” 
who have complete preferences exactly agreeing with those of agent 0 on the 
alternatives she has ranked, while (linearly) aggregating those of agents 1,… ,N . 
The class of such recommendations contains, at one extreme, complete recom-
mendations based on a single virtual guide and, at the other extreme, the most 
incomplete recommendation based on the whole set of virtual guides. As we 
illustrate below, even this most incomplete recommendation generally ranks alter-
natives that agent 0 has not ranked.

The paper is built as follows. We end this introduction with a very brief litera-
ture review. Section  2 presents two stylized examples illustrating how the virtual 
guide recommendations we will later characterize work and contrasting them with 
typical collaborative filtering systems, in particular with respect to the Pareto princi-
ple. Section 3 presents the formal model and results. Besides the main characteriza-
tion mentioned above, we also characterize a more general class of “signed” virtual 
guide recommendations and analyze the computation of (signed) virtual guides as 
well as how to select among them. Section 4 concludes and highlights avenues for 
future research to go beyond the illustrative examples and simple model presented 
here. Proofs appear in the Appendix.

There is obviously a huge literature in computer science on recommendation 
systems that we will not attempt to summarize (see, e.g. the survey by Chen et al. 
2018). Applications of the axiomatic approach based on social choice concepts seem 
scarce in this literature (Pennock et al. 2000; Altman and Tennenholtz 2007). There 
is, on the other hand, a large axiomatic literature in economics on preference aggre-
gation (for expected utility preferences in particular, see, e.g. Harsanyi 1953, 1955; 
Weymark 1991; Mongin and Pivato 2016). A few papers in this literature allow for 
incomplete preferences (Pivato 2011, 2013, 2014; Danan et al. 2013, 2015, 2016). 
The standard preference aggregation problem can be seen as the special case of our 
tailored recommendation problem in which the preferences of the agent to which 
the recommendation is made are “void”—rank no alternatives. Non-tailored recom-
mendations have been explored axiomatically by, e.g. Demange (2014, (2017). Eliaz 
and Spiegler (2019) consider the problem of providing a tailored recommendation 
to a user through statistical models estimated on other users rather than aggregation 
of their preferences. They take the models as given and focus on strategic issues that 
we ignore here.
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2 � Examples

2.1 � Rich ratings

Consider five alternatives a, b, c, d, e and three agents 0, 1, 2. Agents’ preferences 
are represented by the following utility functions u0, u1, u2 , that one can for instance 
assimilate to ratings on a scale between 0 and 10 given on an internet platform:

We want to give a recommendation to agent 0 by extending her preferences to alter-
natives d and e that she has not yet rated, based on the preferences of agents 1 and 2 
who have rated all alternatives. The collaborative filtering systems used by popular 
internet platforms typically fill agent 0’s missing rating for alternative z = d, e with:

where ūn is the average of the ratings expressed by agent n = 0, 1, 2—
ū0 ≈ 4.33, ū1 = 6, ū2 = 3.75—and s0,n is some measure of the similarity between 
the ratings of agent 0 and those of agent n = 1, 2 on the commonly-rated alter-
natives a,  b,  c. A typical similarity measure is the Pearson correlation coeffi-
cient—s0,1 ≈ 0.76, s0,2 = 0—leading to fill agent 0’s missing ratings for alternatives 
d and e with 3.33 and 6.33, respectively. This yields the recommendation ranking 
e ≻ c ≻ b ≻ d ≻ a.

The “virtual guide” recommendations characterized by the Acceptance and Pareto 
principles, on the other hand, are based on positive linear combinations of agents 1 
and 2’s ratings that agree with agent 0’s ratings on the commonly-rated alternatives 
a,  b,  c. The unique such combination—or virtual guide—is 0.5u1 + 0.5u2 . Hence 
there is a unique such recommendation, which fills agent 0’s missing ratings for d 
and e with 0.5u1(d) + 0.5u2(d) = 7 and 0.5u1(e) + 0.5u2(e) = 4.5 , respectively. This 
yields the recommendation ranking d ≻ c ≻ e ≻ b ≻ a . In particular, d is recom-
mended over e, whereas collaborative filtering systems recommend e over d. Also, 
the recommendation follows agents 1 and 2’s unanimous preference for c over e, 
whereas collaborative filtering systems violate the Pareto principle by recommend-
ing e over c.

2.2 � Sparse ratings

The above example has two very peculiar features: first, all agents except 0 have rated 
all alternatives—their preferences are complete—and, second, agent 0 has rated enough 
alternatives to pin down a unique linear combination of the other agents’ ratings. To 

a b c d e

u0 3 4 6 - -

u1 5 2 10 5 8

u2 1 6 2 9 1

ū0 +
s0,1

(
u1(z) − ū1

)
+ s0,2

(
u2(z) − ū2

)

|s0,1| + |s0,2|
,
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illustrate how collaborative filtering and virtual guide recommendations cope with 
sparser ratings, we now consider the same example but taken at an earlier stage when 
only the following ratings have been expressed:

We again want to give a recommendation to agent 0 based on these ratings. For 
collaborative filtering systems, computing the average ratings and the Pearson cor-
relation coefficients on the commonly-rated alternatives a, b leads to fill agent 0’s 
missing rating for alternative c with 0.375. For alternative d, the same approach, dis-
carding agent 1 who has not rated this alternative, leads to filling agent 0’s missing 
rating with ū0 + u2(d) − ū2 = 8 . Finally, for alternative e, we similarly discard agent 
2 and fill agent 0’s missing rating with ū0 − u1(e) + ū1 = 1.75 . This yields the rec-
ommendation ranking d ≻ b ≻ a ≻ e ≻ c , which violates the Pareto principle since 
both agents 1 and 2 have rated c above a.

For virtual guide recommendations, we instead look for positive linear combinations 
�1u1 + �2u2 + � that agree with u0 on the commonly-rated alternatives a,  b, where 
u1 and u2 fill agent 1 and 2’s missing ratings for d and e with any numbers �1 and �2 
between 0 and 10, respectively. Such combinations are characterized by the system:

which is equivalent to:

Any such vector (�1, �2, �, �1, �2) defines a virtual guide filling agent 0’s 
missing ratings for c, d, and e with 3.2 + 5.6�1 , 4.6 + (�1 − 0.2)�1 , and 
2.8 + 0.2�2 + (0.6�2 + 2.4)�1 , respectively. Any set of such virtual guides defines 
a virtual guide recommendation. All these recommendations have in common that 
c ≻ a and d ≻ b ≻ a . At one extreme, the most incomplete of these recommenda-
tions is based on unanimity among all virtual guides and makes no further rank-
ing—note though that it does rank some alternatives that agent 0 has not ranked. At 
the other extreme, complete recommendations are based on a single virtual guide 
and fully rank the five alternatives—i.e. also rank c with respect to b and d as well 
as e with respect to the other four alternatives). For instance, selecting the single 
virtual guide 0.5u1 + 0.5u2 with �1 = 5 and �2 = 1 yields the same recommenda-
tion ranking d ≻ c ≻ e ≻ b ≻ a as in the rich ratings example, whereas selecting the 

a b c d e

u0 3 4 - - -

u1 5 2 10 - 8

u2 1 6 2 9 -

3 = 5�1 + �2 + �, 0 ≤ 10�1 + 2�2 + � ≤ 10, 0 ≤ �1,

4 = 2�1 + 6�2 + �, 0 ≤ �1�1 + 9�2 + � ≤ 10, 0 ≤ �2,

0 ≤ 8�1 + �2�2 + � ≤ 10, 0 ≤ �1 ≤ 10,

0 ≤ �2 ≤ 10,

0 ≤ �1 ≤
17

14
, �2 = 0.2 + 0.6�1, 0 ≤ �1 ≤ min

{
10, 0.2 +

5.4

�1

}
,

� = 2.8 − 5.6�1, 0 ≤ �2 ≤ min
{
10,

36−12�1

1+3�1

}
.
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single virtual guide 0.1u1 + 0.26u2 + 2.24 with �1 = 5 and �2 = 8 yields the recom-
mendation ranking e ≻ d ≻ b ≻ c ≻ a.

3 � Model

3.1 � Expected multi‑utility

We let A be a finite set of alternatives and consider the set X of lotteries—probability 
distributions—over A. A preference relation on X is a binary relation ≿ on X, where 
x ≿ y is interpreted as lottery x being weakly preferred to lottery y. A preference 
relation ≿′ on X extends a preference relation ≿ on X if for all x, y ∈ X , x ≿ y implies 
x ≿′ y . A preference relation ≿ on X is complete if for all x, y ∈ X , either x ≿ y or 
y ≿ x (or both), and incomplete otherwise.

Definition 1  A preference relation ≿ on X is an expected multi-utility preference 
relation if there exists a non-empty, compact, convex set U of utility functions 
u ∶ A → ℝ such that for all x, y ∈ X:

Expected multi-utility preferences are generally incomplete and are axiomatized 
by Baucells and Shapley (2008) and Dubra et al. (2004). They generalize standard 
expected utility preferences by allowing the set U to contain more than one utility 
function or, equivalently, by allowing ≿ to be incomplete. A lottery x is weakly pre-
ferred to a lottery y if and only if all functions in the set U assign a weakly higher 
expected utility to x. If x has a strictly higher expected utility for one of these func-
tions whereas y has a strictly higher expected utility for another one, the two lot-
teries are not ranked. The interpretation is that the agent is unsure about her utility 
function and considers all functions in U as possible. The utility functions in U are 
cardinal in the sense of being unique up to positive affine transformations.1

For technical convenience, we restrict attention to expected multi-utility pref-
erences that can be represented as above with U being the convex hull—set of 
convex combinations—of finitely many utility functions.2 Such preferences 
are axiomatized in Dubra and Ok (2002). They naturally arise, in particular, 
if ≿ is derived from some primitive cardinal ratings of some alternatives in A as 
per Definition 1 with U consisting of all possible ways to fill in the missing rat-
ings.3 For instance, in the rich ratings example, denoting by u�,�

0
 the utility func-

tion filling agent 0’s missing ratings for d and e with � and � , respectively, we take 

x ≿ y if and only if E u(x) ≥ E u(y) for all u ∈ U.

1  More precisely, the closure of the set {�u + � ∶ u ∈ U, � ∈ ℝ+, � ∈ ℝ} is unique.
2  This allows us to dispense with the closure operator in the uniqueness statement above as well as the 
closedness assumption of Danan et al. (2015).
3  While in the examples above we consider possible any rating within the allowed scale, our framework 
can accommodate alternative specifications (for instance, one might consider intermediate ratings only).
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U0 =
{
u
�,�

0
∶ �, � ∈ [0, 10]

}
,U1 =

{
u1
}
,U2 =

{
u2
}
 and we note that U0 is then the 

convex hull of the four utility functions u0,0
0
, u

0,10

0
, u

10,0

0
, u

10,10

0
.

We say as usual that two lotteries x and y are indifferent, denoted, x ∼ y , if both 
x ≿ y and y ≿ x , and that x is strictly preferred to y, denoted x ≻ y , if x ≿ y but not 
y ≿ x . We further say that x is strongly preferred to y, denoted x ≻≻ y , if x′ ≻ y′ 
for every lotteries x′ and y′ “sufficiently close” to x and y, respectively. Formally, 
with the usual notation for mixed lotteries, x ≻≻ y if for all x�, y� ∈ X , there exists 
� ∈ (0, 1) such that 𝜆x + (1 − 𝜆)x� ≻ 𝜆y + (1 − 𝜆)y� . We have that x ∼ y if and only if 
E u(x) = E u(y) for all u ∈ U , and x ≻ y if and only if E u(x) ≥ E u(y) for all u ∈ U 
with strict inequality for at least one u ∈ U . We further have, without loss of gen-
erality, that x ≻≻ y if and only if E u(x) > E u(y) for all u ∈ U.4 Strong preference 
is thus equivalent to strict preference for complete preferences but more demand-
ing for incomplete preferences. For instance, in the rich ratings example, we have 
c ≻≻0 b ≻≻0 a and b ∼0

(
a,

2

3
;c,

1

3

)
 – the lottery yielding a and c with probabilities 2

3
 

and 1
3
 , respectively – as well as b ≻0

(
a,

6

7
;e,

1

7

)
 but not b ≻≻0

(
a,

6

7
;e,

1

7

)
.

3.2 � The recommendation problem

We consider a finite set {0, 1,… ,N} of at least two agents. Each agent n = 0, 1,… ,N 
is endowed with an expected multi-utility preference relation ≿n on X. We want to 
give a recommendation to agent 0, in the form of another expected multi-utility pref-
erence relation ≿ on X satisfying the following two simple properties:

Axiom  (Acceptance principle) For all x, y ∈ X , if x ≿0 y then x ≿ y and if x ≻≻0 y 
then x ≻≻ y.

Axiom  (Pareto principle) For all x, y ∈ X , if x ≿n y for all n = 1,… ,N then x ≿ y.

Acceptance means that the recommendation must extend agent 0’s prefer-
ences, more specifically preserve her weak and strong preferences. In the rich rat-
ings example, we must therefore have c ≻≻ b ≻≻ a and b ∼

(
a,

2

3
;c,

1

3

)
 as well as 

b ≿
(
a,

6

7
;e,

1

7

)
 but not necessarily b ≻

(
a,

6

7
;e,

1

7

)
 . The Pareto principle, on the other 

hand, expresses the requirement that the recommendation must be based on the pref-
erences of agents 1,… ,N . If those agents have a unanimous weak preferences then 
the recommendation must follow it. In the rich ratings example, we must therefore 
have c ≿ e ≿ a , d ≿ a , and d ≿ b.

We will see below that the Acceptance and Pareto principles together imply that 
the recommendation must also follow unanimous strong preferences from agents 
1,… ,N in most cases—and in the two examples above in particular, so that we must 
have c ≻≻ e , c ≻≻ a , and d ≻≻ b in the first example. We will also explain there why 

4  It is without loss of generality in the sense that we can always choose a representation U such that this 
holds.
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we generally do not expect the recommendation to preserve agent 0’s strict prefer-
ences or follow unanimous strict preferences from agents 1,… ,N.

Definition 2  The preference relations ≿0,≿1,… ,≿N are coherent if there are no 
lotteries x and y such that x ≻≻0 y whereas y ≿n x for all n = 1,… ,N.

Coherence is obviously necessary for the Acceptance and Pareto principles to be 
mutually compatible.5 We will show below that it is sufficient as well.6 We will also 
consider below a weakening of the Pareto principle that is more often compatible 
with the Acceptance principle.

3.3 � Virtual guide recommendations

We now provide a characterization of the recommendations satisfying the 
Acceptance and Pareto principles within the expected multi-utility model. Let 
U0,U1,… ,UN be representations of ≿0,≿1,… ,≿N as per Definition 1, respectively.

Definition 3  A utility function u ∶ A → ℝ is a virtual guide (for agent 0) if u ∈ U0 
and u =

∑N

n=1
�nun + � for some u1 ∈ U1,… , uN ∈ UN , �1,… , �N ∈ ℝ+, � ∈ ℝ.

A virtual guide is thus a possible utility function for agent 0 that is also a positive 
linear combination of possible utility functions for agents 1,… ,N . It corresponds to 
a complete preference relation agreeing with that of agent 0 on the alternatives she 
has ranked while aggregating complete preference relations agreeing with those of 
agents 1,… ,N on the alternatives they have ranked, respectively.

We let V denote the set of all virtual guides. Because of the cardinal unique-
ness of expected multi-utility representations, V is essentially determined by the 
preference relations ≿0,≿1,… ,≿N , independently of their particular representa-
tions U0,U1,… ,UN . More precisely, choosing different representations U1,… ,UN 
leaves V unchanged and only affects the coefficients �1,… , �N and � corresponding 
to a given virtual guide. Choosing a different representation U0 , on the other hand, 
causes the virtual guides in V to be rescaled accordingly but leaves the correspond-
ing expected utility preferences unchanged.

Proposition 1  A recommendation ≿ satisfies the Acceptance and Pareto principles 
if and only if it can be represented as per Definition 1 by some set U ⊆ V  of virtual 
guides.

The recommendations satisfying the Acceptance and Pareto principles are thus 
exactly those that are based on virtual guides. Any recommendation that is not of 

5  Indeed, if there are lotteries x and y such that x ≻≻0 y whereas y ≿n x for all n = 1,… ,N , then the 
Acceptance principle implies x ≻≻ y whereas the Pareto principle implies y ≿ x , a contradiction.
6  This is not trivial because of our restriction to expected multi-utility preferences.
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this form violates at least one of the two principles—in particular, as we illustrated 
above, collaborating filtering systems violate the Pareto principle. In the rich rat-
ings example, there is a unique virtual guide and, hence, the corresponding (com-
plete) preference relation is the only possible recommendation. In the sparse ratings 
example, there are multiple virtual guides and, hence, any subset of V corresponds 
to a possible recommendation. It is possible, in particular, to select a single virtual 
guide, yielding a complete recommendation as in the first example, but it is also 
possible to select multiple virtual guides, yielding an incomplete recommendation. 
Selecting the whole set V yields the most incomplete such recommendation.

Our recommendation problem generalizes the classical preference aggregation 
problem, which corresponds to the particular case where ≿0 is void—or agent 0 has 
not rated more than one alternative. In this case the Acceptance principle is trivi-
ally satisfied and Proposition 1 boils down to the following statement: ≿ satisfies 
the Pareto principle with respect to ≿1,… ,≿N if and only if each utility function 
in U is a positive linear combination of some utility functions in U1,… ,UN . This 
generalization of Harsanyi (1955)’s aggregation theorem was proved in Danan et al. 
(2015). Assuming further that ≿ as well as ≿1,… ,≿N are complete, we recover Har-
sanyi’s theorem itself. When ≿0 is not void, the Acceptance principle requires each 
utility function in U to be a positive affine transformation of some utility function in 
U0 . Note that this generally places restrictions on the possible weights entering the 
linear combinations—sometimes pinning down unique weights as in the rich ratings 
example—whereas these weights are arbitrary in the pure aggregation setting.

When ≿0 contains at least one strong preference—or agent 0 has given different 
ratings to at least two alternatives—a corollary to Proposition 1 is that the recom-
mendations satisfying the Acceptance and Pareto principles also follow unanimous 
strong preferences from agents 1,… ,N : if x ≻≻n y for all n = 1,… ,N then x ≻≻ y

.7 This principle generalizes to incomplete preferences the “Weak Pareto” or “ P2 ” 
principle analyzed by Weymark (1993, 1995) and de Meyer and Mongin (1995) in 
the aggregation context. On the other hand, recommendations satisfying the Accept-
ance and Pareto principles generally neither preserve agent 0’s strict preferences nor 
follow unanimous strict preferences from agents 1,… ,N . For instance, in the sparse 
ratings example, we have b ≻0

(
a,

6

7
;e,

1

7

)
 but selecting a single virtual guide fill-

ing agent 0’s missing rating for alternative e with 10 leads to b ∼
(
a,

6

7
;e,

1

7

)
 . We 

also have 
(
c,

1

2
;e,

1

2

)
≻≻1 a and 

(
c,

1

2
;e,

1

2

)
≻2 a but selecting a single virtual guide 

filling agent 0’s missing ratings for c and e with 3.2 and 2.8, respectively, leads to 
(
c,

1

2
;e,

1

2

)
∼ a.8

7  Indeed, in that case, U0 can not contain constant utility functions and, hence, any virtual guide 
u =

∑N

n=1
�nun + � ∈ U0 must be such that 𝜃n > 0 for at least one n = 1,… ,N.

8  In this example, the recommendation could possibly preserve agent 0’s strict preferences and/or follow 
unanimous strict preferences from agents 1,… ,N , depending on which virtual guides are selected. Other 
examples can be constructed where that is not possible.
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3.4 � Signed virtual guides

A limitation of the concept of virtual guide is that the weights in the linear combina-
tion cannot be negative. Collaborative filtering systems, on the other hand, allow for 
negative weights, so that the recommendation can possibly draw information from 
agents whose ratings are negatively correlated with the ratings of agent 0. In order to 
characterize virtual guide recommendations with possibly negative weights, we now 
weaken the Pareto principle as follows:

Axiom  (Pareto-Indifference principle) For all x, y ∈ X , if x ∼n y for all i = 1,… ,N 
then x ∼ y .

The Pareto-Indifference principle merely requires the recommendation to follow 
unanimous indifferences from agent 1,… ,N . It does not require the recommenda-
tion to follow unanimous weak preferences from agents 1,… ,N when some of these 
weak preferences are strict or strong, opening the possibility to weigh some of these 
agents negatively.

Definition 4  The preference relations ≿0,≿1,… ,≿N are weakly coherent if there 
are no lotteries x and y such that x ≻≻0 y whereas x ∼n y for all n = 1,… ,N.

Weak coherence is substantially weaker than coherence and we expect it to hold 
in most practical cases. It is obviously necessary for the Acceptance and Pareto-
Indifference principles to be mutually compatible and we will show below that it is 
also sufficient.

Definition 5  A utility function u ∶ A → ℝ is a signed virtual guide 
(for agent 0) if u ∈ U0 and u =

∑N

n=1

�
�nun − �nvn

�
+ � for some 

u1, v1 ∈ U1,… , uN , vN ∈ UN , �1,�1,… , �N ,�N ∈ ℝ+, � ∈ ℝ.

A signed virtual guide is thus a possible utility function for agent 0 that is also the 
difference of two positive linear combinations of possible utility functions for agents 
1,… ,N . In the sparse ratings example, the utility function u = 3u0

2
− 2.8u1

2
+ 2.8 , where 

u0
2
 and u1

2
 fill agent 2’s missing rating for alternative e with 0 and 1, respectively, is a 

signed virtual guide but not a virtual guide.9 We let W denote the set of all signed virtual 
guides. Like the set V of virtual guides, W is essentially determined by the preference rela-
tions ≿0,≿1,… ,≿N , independently of their particular representations U0,U1,… ,UN.

Proposition 2  A recommendation ≿ satisfies the Acceptance and Pareto-Indiffer-
ence principles if and only if it can be represented as per Definition 1 by some set 
U ⊆ W of signed virtual guides.

9  Indeed, u fills agent 0’s missing ratings for alternatives c, d, and e with 3.2, 4.6, and 0, respectively, 
whereas all virtual guides fill agent 0’s missing rating for e with at least 2.8. Note that u cannot be 
obtained as a linear combination �1u1 + �2u2 + � with u1 ∈ U1 , u2 ∈ U2 , and �1, �2, � ∈ ℝ.



25

1 3

Tailored recommendations﻿	

3.5 � Computing (signed) virtual guides

We now show that the set of (signed) virtual guides can be computed simply by 
solving a finite linear system. This allows us to deduce some properties of this set 
and, in particular, to identify the cases where it is empty—or, equivalently, where 
(signed) virtual guide recommendations do not exist. To this end, we enumerate as 
{a1,… , aK} the finite set A of alternatives, where K ≥ 1 denotes the number of alter-
natives. For all n = 0, 1,… ,N , we also enumerate as {un,1,… , un,I(n)} the finite set 
of utility functions of which Un is the convex hull, where I(n) ≥ 1 denotes the num-
ber of such functions. A utility function u ∶ A → ℝ then belongs to Un if and only 
if u =

∑I(n)

i=1
�n,iun,i for some �n,1,… , �n,I(n) ∈ ℝ+ such that 

∑I(n)

i=1
�n,i = 1 . Virtual 

guides then correspond to solutions to the finite system:

Defining �n,i = �n�n,i for all n = 1,… , n and i = 1,… , I(n) , it is sufficient to solve 
the finite linear system:

Proposition 3  V is non-empty if and only if ≿0,≿1,… ,≿N are coherent. Moreover, 
V is then the convex hull of finitely many utility functions.

Similarly, signed virtual guides correspond to solutions to the finite system:

∑I(0)

i=1
�0,iu0,i(ak) =

∑N

n=1

∑I(n)

i=1
�n�n,iun,i(ak) + �, k = 1,… ,K,

1 =
∑I(n)

i=1
�n,i, n = 0, 1,… ,N,

0 ≤ �n,i, n = 0, 1,… ,N, i = 1,… , I(n),

0 ≤ �n, n = 0, 1,… ,N.

(1)

∑I(0)

i=1
�0,iu0,i(ak) =

∑N

n=1

∑I(n)

i=1
�n,iun,i(ak) + �, k = 1,… ,K,

1 =
∑I(0)

i=1
�0,i,

0 ≤ �0,i, i = 1,… , I(0),

0 ≤ �n,i, n = 1,… ,N, i = 1,… , I(n).

∑I(0)

i=1
�0,iu0,i(ak) =

∑N

n=1

∑I(n)

i=1
(�n�n,i − �n�n,i)un,i(ak) + �, k = 1,… ,K,

1 =
∑I(n)

i=1
�n,i, n = 0, 1,… ,N,

1 =
∑I(n)

i=1
�n,i, n = 1,… ,N,

0 ≤ �n,i, n = 0, 1,… ,N, i = 1,… , I(n),

0 ≤ �n,i, n = 1,… ,N, i = 1,… , I(n),

0 ≤ �n, n = 0, 1,… ,N,

0 ≤ �n, n = 0, 1,… ,N.
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Defining �n,i = �n�n,i − �n�n,1 for all n = 1,… , n and i = 1,… , I(n) , it is sufficient 
to solve the finite linear system:

Proposition 4  W is non-empty if and only if ≿0,≿1,… ,≿N are weakly coherent. 
Moreover, W is then the convex hull of finitely many utility functions.

3.6 � Selecting among (signed) virtual guides

As the sparse ratings example illustrates, which (signed) virtual guides are selected 
can critically impact the recommendation. Axiomatically characterizing particular 
subclasses of virtual guide recommendations—or even a single recommendation—
would therefore provide useful guidance in this regard. To this end, it seems natural 
to extend the present framework by considering a recommendation rule f associating 
a recommendation ≿ = f

(
≿0,≿1,… ,≿N

)
 to each preference profile 

(
≿0,≿1,… ,≿N

)
 

in some domain D. We shall more specifically consider the domains Dc and Dwc 
of coherent and weakly coherent profiles, respectively, and say that f satisfies the 
Acceptance (resp. Pareto, Pareto-Indifference) principle if f

(
≿0,≿1,… ,≿N

)
 satis-

fies this principle for all 
(
≿0,≿1,… ,≿N

)
∈ D . This extended framework makes it 

possible to express additional principles, such as the following ones.

Axiom  (Anonymity principle) For all 
(
≿0,≿1,… ,≿N

)
,
(
≿0,≿

�
1
,… ,≿�

N

)
∈ D , if (

≿�
1
,… ,≿�

N

)
 is a permutation of 

(
≿1,… ,≿N

)
 then f (≿0,≿

�
1
,… ,≿�

N

)
= f

(
≿0,≿1,… ,≿N

).

Axiom  (Internal-Robustness principle) For all (≿0,≿1,… ,≿
N

)
,
(
≿�
0
,≿1,… ,≿

N

)
∈ D , if ≿′

0
 

extends ≿0 then f
(
≿�
0
,≿1,… ,≿N

)
 extends f

(
≿0,≿1,… ,≿N

)
.

Axiom  (External-Robustness principle) For all (≿0,≿1,… ,≿
N

)
,
(
≿0,≿

�
1
,… ,≿�

N

)
∈ D , if ≿′

n
 

extends ≿n for all n = 1,… ,N then f
(
≿0,≿

�
1
,… ,≿�

N

)
 extends f

(
≿0,≿1,… ,≿N

)
.

Anonymity means that no agent n = 1,… ,N has more “intrinsic” influence on 
the recommendation than another. The Internal-Robustness and External-Robust-
ness principles express the idea that as agent 0 or agents 1,… ,N rate more alterna-
tives, and provided the preference profile remains coherent or weakly coherent, the 
recommendation becomes more complete without reversing previous rankings. For 
instance, ≿n from the rich ratings example extends ≿n from the sparse ratings exam-
ple for n = 0, 1, 2 . If all virtual guides are kept in the sparse ratings example, then 
the rich ratings recommendation ranking extends the sparse ratings recommendation 

(2)

∑I(0)

i=1
�0,iu0,i(ak) =

∑N

n=1

∑I(n)

i=1
�n,iun,i(ak) + �, k = 1,… ,K,

1 =
∑I(0)

i=1
�0,i,

0 ≤ �0,i, i = 1,… , I(0).
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ranking, in accordance with the two robustness principles. If, on the other hand, the 
single virtual guide 0.1u5

1
+ 0.26u8

2
+ 2.24 is selected in the sparse ratings example, 

then the sparse ratings recommendation ranking is partly reversed by the rich ratings 
recommendation ranking, violating at least one of these two principles.10

Proposition 5  There exists a unique recommendation rule on Dc satisfying the 
Acceptance, Pareto, and Internal-Robustness principles, which consists in selecting 
all virtual guides for all profiles. This rule also satisfies the Anonymity and Exter-
nal-Robustness principles.

Proposition 6  There exists a unique recommendation rule on Dwc satisfying the 
Acceptance, Pareto-Indifference, and Internal-Robustness principles, which consists 
in selecting all signed virtual guides for all profiles. This rule also satisfies the Ano-
nymity and External-Robustness principles.

The most incomplete (signed) virtual guide recommendation rule is thus the only 
one that is compatible with the Internal-Robustness principle. In view of this result, 
we may call this rule the robust (signed) virtual guide recommendation rule. Note 
that the statements in Propositions 6 and 7 are well defined because, as explained 
above, the set of (signed) virtual guides is essentially determined by the preference 
profile independently of the chosen representations. One may therefore choose arbi-
trary representations in order to compute the recommendation ranking. A feature 
of this rule that might be of practical interest is that the recommendation ranking 
can be computed “incrementally” by dropping (signed) virtual guides as new ratings 
arrive.

Although the Internal-Robustness principle is clearly a very demanding require-
ment, the above results suggest that a certain degree of incompleteness in the recom-
mendation ranking might help obtaining more “stable” recommendations. We note 
in this regard that the External-Robustness principle is weaker than the Internal-
Robustness principle in our framework.11 It is nevertheless incompatible with com-
plete recommendation rules.

Proposition 7  If A contains at least three alternatives then there exists no recom-
mendation rule on Dc (resp. Dwc ) satisfying the Acceptance, Pareto (resp. Pareto-
Indifference), and External-Robustness principles that yields a complete recommen-
dation for all profiles.

10  Collaborative filtering systems, on the other hand, satisfy the anonymity principle but violate the two 
robustness principles.
11  For instance, any recommendation rule that selects a single (signed) virtual guide whenever 
≿1,… ,≿N are complete but keeps all (signed) virtual guides otherwise satisfies the Acceptance, Pareto 
(resp. Pareto-Indifference) and External-Robustness principles but not the Internal-Robustness principle.
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4 � Conclusion

We view the present paper’s contribution as mainly conceptual: the illustrative 
examples and simple model we presented demonstrate how an axiomatic analy-
sis of recommendation systems in terms of preference aggregation and extension 
can provide important insights into their normative properties. We showed in par-
ticular that collaborative filtering systems—used by popular internet platforms—
typically violate the Pareto principle and characterized a new class of recom-
mendation rules—based on virtual guides—satisfying this principle. Finally, we 
extended our formal framework to identify a particular rule within this class—the 
robust virtual guide recommendation rule. This rule has interesting stability prop-
erties but is arguably quite extreme. A natural avenue for future research is there-
fore to characterize more complete rules in this extended setting. It also seems 
interesting to go beyond this setting and do away with lotteries or allow for stra-
tegic behavior.

On the practical side, one may want to go beyond illustrative examples to 
assess how frequently do collaborative filtering systems violate the Pareto prin-
ciple and how different are collaborative filtering and virtual guide recommenda-
tions from each other. Doing so would require an empirically relevant dataset, 
perhaps stochastically generated to avoid the endogeneity that some real datasets 
are based on the use of a particular recommendation system. We may wonder, in 
particular, whether virtual recommendation rules help alleviate some of the dif-
ficulties typically associated with collaborative filtering systems.

A first such difficulty is that collaborative filtering systems generally struggle 
to produce recommendations for “gray sheep” users, i.e. agents whose ratings are 
not highly correlated—positively or negatively–with those of any other agent. 
One may expect this issue to be less prevalent for virtual guide recommendations, 
because they rely on virtual agents whose ratings exactly match those of agent 
0 rather than on real agents whose ratings are “close” to those of agent 0. These 
virtual agents are aggregates of real agents, but these real agents can as well be 
“close” or “remote” to agent 0.

A second difficulty is that collaborative filtering systems tend to forgo “diver-
sity” by focusing on alternatives that have been rated by many agents, at the 
expense of less rated—perhaps newer—ones. Virtual guide recommendations 
seem to suffer less from this bias: even if an alternative has received no or few 
ratings, there will generally be virtual guides assigning a range of ratings to it. 
Opting for an incomplete recommendation rather than a complete one may in fact 
be useful in this regard, because more such alternatives will be at the top of the 
recommendation ranking.

A third difficulty is that collaborative filtering systems can be manipulated by 
“shilling attacks”, i.e. by injecting a large number of fake ratings in order to pro-
mote or demote some alternatives. Although the present model leaves strategic 
considerations aside and considers a fixed set of agents, we may note that virtual 
recommendations are not immune to the injection of a fake agent either, as this 
may enlarge the set of virtual guides and, hence, affect the recommendation. The 
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set of virtual guides is, however, immune to injecting additional “clones” of this 
fake agent, as it does not depend on how many agents with a given preference 
relation there are. Furthermore, injecting additional agents that are “close” to the 
first one generally does not affect this set substantially. Whether and how the rec-
ommendation is affected by the injection of additional clones then depends on 
which virtual guides are selected.
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Appendix: Proofs

We derive Propositions 1 and 2 from slightly more general results. To this end we 
consider the following weakening of the Acceptance principle.

Axiom  (Weak Acceptance principle) For all x, y ∈ X , if x ≿0 y then x ≿ y.

Lemma 1  Let U be a representation of ≿ as per Definition 1. 

(a)	 ≿ satisfies the Weak Acceptance and Pareto principles if and only if, for all 
u ∈ U , there exist u0 ∈ U0, u1 ∈ U1,… , uN ∈ UN , �0, �1,… , �N ∈ ℝ+, �0, � ∈ ℝ 
such that:

(b)	 ≿  s a t i s f i e s  t h e  We a k  Ac c e p t a n c e  a n d  Pa re t o - I n d i f f e r-
ence pr inciples  i f  and only  i f ,  for  al l  u ∈ U  ,  there exist 
u0 ∈ U0, u1, v1 ∈ U1,… , uN , vN ∈ UN , �0, �1,�1,… , �N ,�N ∈ ℝ+, �0, � ∈ ℝ 
such that:

Proof 

(a)	 It is obvious that if (3) holds then ≿ satisfies the Weak Acceptance and Pareto 
principles. Conversely, assume (3) does not hold. Then at least one u ∈ U must 
lie outside at least one of the two sets 

(3)u = �0u0 + �0 =
∑N

n=1
�nun + �.

(4)u = �0u0 + �0 =
∑N

n=1
(�nun − �nvn) + �.
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 Note that both S and T are closed, convex cones in ℝA.
	 Case 1. If u ∉ S then, by the separating hyperplane theorem, there exists h ∈ ℝ

A , 
h ≠ 0 , such that 

∑
a∈A h(a)u(a) > 0 ≥

∑
a∈A h(a)s(a) for all s ∈ S . Since s + � ∈ S 

for all s ∈ S and � ∈ ℝ , this can only be the case if 
∑

a∈A h(a) = 0 , for otherwise 
we could make 

∑
a∈A h(a)(s(a) + �) =

∑
a∈A h(a)s(a) + �

∑
a∈A h(a) arbitrarily 

large by taking � sufficiently close to +∞ or −∞ . Hence, letting � =
∑

a∈A �h(a)� 
and defining x, y ∈ ℝ

A by x(a) = max{h(a),0}

�
 and y(a) = max{−h(a),0}

�
 , we have 𝜉 > 0 , 

x, y ∈ X  , and h = �(x − y) . Since 
∑

a∈A h(a)u(a) > 0 , it follows that 
E u(x) > E u(y) , so it cannot be the case that y ≿ x by Definition 1. But since 
U0 ⊂ S , it also follows that 0 ≥

∑
a∈A h(a)u0(a) and, hence, E u0(y) ≥ E u0(x) for 

all u0 ∈ U0 , so that y ≿0 x by Definition 1. This contradicts the Weak Acceptance 
principle.

	 Case 2. If u ∉ T then, by the separating hyperplane theorem, there exists h ∈ ℝ
A , 

h ≠ 0 , such that 
∑

a∈A h(a)u(a) > 0 ≥
∑

a∈A h(a)t(a) for all t ∈ T  . By the same 
argument as in Case 1, we must have 

∑
a∈A h(a) = 0 and, hence, we can write 

h = �(x − y) with 𝜉 > 0 and x, y ∈ X . Since 
∑

a∈A h(a)u(a) > 0 , it follows that 
E u(x) > E u(y) , so it cannot be the case that y ≿ x by Definition 1. But for all 
n = 1,… ,N , since Un ⊂ T  , it also follows that 0 ≥

∑
a∈A h(a)un(a) and, hence, 

E un(y) ≥ E un(x) for all un ∈ Un , so that y ≿n x by Definition 1. This contradicts 
the Pareto principle.

(b)	 It is obvious that if (4) holds then ≿ satisfies the Weak Acceptance and Pareto-
Indifference principles. Conversely, assume (4) does not hold. Then at least one 
u ∈ U must lie outside at least one of the two sets S and: 

 We then proceed as in the proof of Part (a), except that in Case 2, since T ′ is 
a linear subspace of ℝA , the separating hyperplane theorem now implies that ∑

a∈A h(a)u(a) > 0 =
∑

a∈A h(a)t(a) for all t ∈ T � . Hence for all n = 1,… ,N , 
we now have E un(x) = E un(y) for all un ∈ Un , so that x ∼n y by Definition 1, 
which contradicts the Pareto-Indifference principle.

 	�  ◻

Proof of Proposition 1  It is obvious that if ≿ can be represented as per Definition 1 by 
some set U ⊆ V  of virtual guides, then it satisfies the Acceptance and Pareto princi-
ples. Conversely, assume ≿ satisfies these two principles and fix some representation 
U of ≿ as per Definition 1. Then for all u ∈ U , (3) holds by Lemma 1(a). It is suffi-
cient to show that (3) actually holds with 𝜃0 > 0 for some u0 ∈ U0 , since then the 
closed convex hull of the set 

{ u−�0

�0
∶ u ∈ U

}
 also represents ≿ as per Definition 1 

and is a subset of V. So suppose (3) does not hold with 𝜃0 > 0 for any u0 ∈ U0 . Note 
that this implies that u is a constant function whereas U0 contains no constant func-
tion. Hence, by the separating hyperplane theorem, there exists h ∈ ℝ

A , h ≠ 0 , such 
that 

∑
a∈A h(a)u0(a) > 𝜅

∑
a∈A h(a) for all u0 ∈ U0 and � ∈ ℝ . By the same argument 

S = {�0u0 + �0 ∶ u0 ∈ U0, �0 ∈ ℝ+, �0 ∈ ℝ} and

T =

{∑N

n=1
�nun + � ∶ u1 ∈ U1,… , uN ∈ UN , �1,… , �N ∈ ℝ+, � ∈ ℝ

}
.

T � =

{∑N

n=1
(�nun − �nvn) + � ∶ u1, v1 ∈ U1,… , uN , vN ∈ UN , �1,�1,… , �N ,�N ∈ ℝ+, � ∈ ℝ

}
.
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as in Case 1 of the proof of Lemma 1(a), we must have 
∑

a∈A h(a) = 0 and, hence, 
we can write h = �(x − y) with 𝜉 > 0 and x, y ∈ X . For all u0 ∈ U0 , since ∑

a∈A h(a)u0(a) > 0 , it follows that E u0(x) > E u0(y) and, hence, x ≻≻0 y . The 
Acceptance principle then implies that x ≻≻ y , contradicting the fact that U contains 
a constant function. 	�  ◻

Proof of Proposition 2  Similar to the proof of Proposition 1. 	�  ◻

Proof of Proposition 3  Letting � = �+ − �− with �+, �− ∈ ℝ+ in (1), V is non-empty 
if and only if the following finite linear system has a non-negative solution:

By Farkas’ Lemma, this system has a non-negative solution if and only if there exist 
no h ∈ ℝ

K and � ∈ ℝ such that:

or, equivalently, if there exists no h ∈ ℝ
K such that:

By the same argument as in Case 1 of the proof of Lemma 1(a), this is equiva-
lent to the non-existence of lotteries x, y ∈ X such that x ≻≻0 y and y ≿n x for all 
n = 1,… ,N . The fact that V is then the convex hull of finitely many functions sim-
ply follows from the finiteness and linearity of the above system as well as the fact 
that V is a subset of the compact set U0 . 	�  ◻

Proof of Proposition 4  Letting �n,i = �+

n,i
− �−

n,i
 and � = �+ − �− where 

�+

n,i
,�−

n,i
, �+, �− ∈ ℝ+ in (2), W is non-empty if and only if the following finite linear 

system has a non-negative solution:

0 =
∑I(0)

i=1
�0,iu0,i(ak) −

∑N

n=1

∑I(n)

i=1
�n,iun,i(ak) − (�+ − �−), k = 1,… ,K,

1 =
∑I(0)

i=1
�0,i.

0 ≤
∑K

k=1
hku0,i(ak) + 𝜁 , i = 1,… , I(0),

0 ≤ −
∑K

k=1
hkun,i(ak), n = 1,… ,N, i = 1,… , I(n),

0 ≤
∑K

k=1
hk,

0 ≤ −
∑K

k=1
hk,

0 > 𝜁 ,

0 <

∑K

k=1
hku0,i(ak), i = 1,… , I(0),

0 ≥
∑K

k=1
hku0,i(ak), n = 1,… ,N, i = 1,… , I(n),

0 =
∑K

k=1
hk.
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By Farkas’ Lemma, this system has a non-negative solution if and only if there exist 
no h ∈ ℝ

K and � ∈ ℝ such that:

or, equivalently, if there exists no h ∈ ℝ
K such that:

By the same argument as in Case 1 of the proof of Lemma 1(a), this is equiva-
lent to the non-existence of lotteries x, y ∈ X such that x ≻≻0 y and x ∼n y for all 
n = 1,… ,N . The fact that W is then the convex hull of finitely many functions sim-
ply follows from the finiteness and linearity of the above system as well as the fact 
that W is a subset of the compact set U0 . 	�  ◻

Proof of Proposition 5  It is obvious that the recommendation rule on Dc consist-
ing in selecting all virtual guides for all profiles satisfies the Acceptance, Pareto, 
Internal-Robustness, Anonymity, and External-Robustness principles. Con-
versely, let f be a recommendation rule on Dc satisfying the Acceptance, Pareto, 
and Internal-Robustness principles. Consider a profile 

(
≿0,≿1,… ,≿N

)
∈ Dc 

and let ≿ = f
(
≿0,≿1,… ,≿N

)
 . Fixing arbitrary representations U0,U1,… ,UN of 

≿0,≿1,… ,≿N , respectively, let V denote the corresponding set of virtual guides. 
Then by Proposition 1, ≿ can be represented as per Definition 1 by some set U ⊆ V .

Suppose ≿ cannot be represented as per Definition 1 by V. By the uniqueness 
of expected multi-utility representation and our finiteness assumption, we must 
then have {�u + � ∶ u ∈ U, � ∈ ℝ+, � ∈ ℝ} ≠ {�v + � ∶ v ∈ V , � ∈ ℝ+, � ∈ ℝ} 
and, hence, there must exist some u ∈ U that does not belong to 
{�v + � ∶ v ∈ V , � ∈ ℝ+, � ∈ ℝ} . By the same argument as in Case 1 of the proof 

0 =
∑I(0)

i=1
�0,iu0,i(ak) −

∑N

n=1

∑I(n)

i=1
(�+

n,i
− �−

n,i
)un,i(ak) − (�+ − �−), k = 1,… ,K,

1 =
∑I(0)

i=1
�0,i.

0 ≤
∑K

k=1
hku0,i(ak) + 𝜁 , i = 1,… , I(0),

0 ≤ −
∑K

k=1
hkun,i(ak), n = 1,… ,N, i = 1,… , I(n),

0 ≤
∑K

k=1
hkun,i(ak), n = 1,… ,N, i = 1,… , I(n),

0 ≤
∑K

k=1
hk,

0 ≤ −
∑K

k=1
hk,

0 > 𝜁 ,

0 <

∑K

k=1
hku0,i(ak), i = 1,… , I(0),

0 =
∑K

k=1
hku0,i(ak), n = 1,… ,N, i = 1,… , I(n),

0 =
∑K

k=1
hk.
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of Lemma 1(a), it follows that there exist x, y ∈ X such that E u(x) > Eu(y) whereas 
E v(y) ≥ E v(x) for all v ∈ V  . Hence, letting ≿′

0
 be represented as per Definition 1 by {

u0
}
 , we have x ≻≻′

0
y . On the other hand, letting ≿� = f (

(
≿�
0
,≿1,… ,≿N

)
 , we have 

y ≿′ x by the Internal-Robustness principle. This contradicts the Acceptance princi-
ple. 	�  ◻

Proof of Proposition 6  Similar to the proof of Proposition 5. 	�  ◻

Proof of Proposition 7  Assume A contains at least three alternatives a,  b,  c, let 
w,w� ∶ A → ℝ be such that w(a) = w�(b) = 1 and w(b) = w�(a) = w(c) = w�(c) = 0 , 
and let U denote the convex hull of {w,w�} . Note that for all u, v ∈ U , if u ≠ v 
then there exist x, y ∈ X such that E u(x) > E u(y) whereas E v(y) > E v(x) . Now 
let f be a recommendation rule on Dc (resp. Dwc ) satisfying the Acceptance 
and Pareto (resp. Pareto-Indifference) principles that yields a complete recom-
mendation for all profiles. Let ≿ be represented as per Definition 1 by U and 
≿� = f

(
≿,≿,… ,≿

)
 . Then by Proposition 1 (resp. 2), ≿′ can be represented as per 

Definition 1 by {u} for some u ∈ U . Let ≿′′ be represented by some v ∈ U ⧵ {u} 
and ≿��� = f

(
≿,≿��,… ,≿��

)
 . Again by Proposition 1 (resp. 2), ≿′′′ can be repre-

sented as per Definition 1 by {v} . Hence ≿′′′ does not refine ≿′ , so f does not sat-
isfy the External-Robustness principle. 	�  ◻
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